A lawyer commutes daily from his suburban home to his midtown office. The average time for a one-way trip is 23 minutes, with a standard deviation of 3.7 minutes. Assume the distribution of trip times to be normally distributed. Complete parts (a) through (e) below. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. (a) What is the probability that a trip will take at least hour? (Round to four decimal places as needed.) (b) If the office opens at 9:00 A.M. and the lawyer leaves his house at 8:45 A.M. daily, what percentage of the time is he late for work? % ☐ (Round to two decimal places as needed.) (c) If he leaves the house at 8:35 A.M. and coffee is served at the office from 8:50 A.M. until 9:00 A.M., what is the probability that he misses coffee? (Round to four decimal places as needed.) (d) Find the length of time above which we find the slowest 15% of trips. ☐ minutes (Round to three decimal places as needed.) (e) Find the probability that 2 of the next 3 trips will take at least (Round to four decimal places as needed.) hour.
A lawyer commutes daily from his suburban home to his midtown office. The average time for a one-way trip is 23 minutes, with a standard deviation of 3.7 minutes. Assume the distribution of trip times to be normally distributed. Complete parts (a) through (e) below. Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. (a) What is the probability that a trip will take at least hour? (Round to four decimal places as needed.) (b) If the office opens at 9:00 A.M. and the lawyer leaves his house at 8:45 A.M. daily, what percentage of the time is he late for work? % ☐ (Round to two decimal places as needed.) (c) If he leaves the house at 8:35 A.M. and coffee is served at the office from 8:50 A.M. until 9:00 A.M., what is the probability that he misses coffee? (Round to four decimal places as needed.) (d) Find the length of time above which we find the slowest 15% of trips. ☐ minutes (Round to three decimal places as needed.) (e) Find the probability that 2 of the next 3 trips will take at least (Round to four decimal places as needed.) hour.
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
Please be careful and precise with final answer.
![A lawyer commutes daily from his suburban home to his midtown office. The average time for a one-way trip is 23 minutes, with a standard deviation of 3.7 minutes. Assume the distribution of trip times to be normally distributed. Complete parts (a) through (e) below.
Click here to view page 1 of the standard normal distribution table.
Click here to view page 2 of the standard normal distribution table.
(a) What is the probability that a trip will take at least
2
hour?
(Round to four decimal places as needed.)
(b) If the office opens at 9:00 A.M. and the lawyer leaves his house at 8:45 A.M. daily, what percentage of the time is he late for work?
%
(Round to two decimal places as needed.)
(c) If he leaves the house at 8:35 A.M. and coffee is served at the office from 8:50 A.M. until 9:00 A.M., what is the probability that he misses coffee?
ப
(Round to four decimal places as needed.)
(d) Find the length of time above which we find the slowest 15% of trips.
minutes
(Round to three decimal places as needed.)
(e) Find the probability that 2 of the next 3 trips will take at least
1
hour.
(Round to four decimal places as needed.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F364f9b41-b870-44dd-80a1-5484385d0f56%2F67937c33-6675-45a3-8ddf-76a10204d958%2Fr7vv6cq_processed.png&w=3840&q=75)
Transcribed Image Text:A lawyer commutes daily from his suburban home to his midtown office. The average time for a one-way trip is 23 minutes, with a standard deviation of 3.7 minutes. Assume the distribution of trip times to be normally distributed. Complete parts (a) through (e) below.
Click here to view page 1 of the standard normal distribution table.
Click here to view page 2 of the standard normal distribution table.
(a) What is the probability that a trip will take at least
2
hour?
(Round to four decimal places as needed.)
(b) If the office opens at 9:00 A.M. and the lawyer leaves his house at 8:45 A.M. daily, what percentage of the time is he late for work?
%
(Round to two decimal places as needed.)
(c) If he leaves the house at 8:35 A.M. and coffee is served at the office from 8:50 A.M. until 9:00 A.M., what is the probability that he misses coffee?
ப
(Round to four decimal places as needed.)
(d) Find the length of time above which we find the slowest 15% of trips.
minutes
(Round to three decimal places as needed.)
(e) Find the probability that 2 of the next 3 trips will take at least
1
hour.
(Round to four decimal places as needed.)
![Areas under the Normal Curve
.03
2
.00
.01
.02
.04
.05
.06
.07
.08
.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.0
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.2
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.3
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.5
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.6
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7
0.8 0.7881
0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.0
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.1
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.2
1.3
0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.3
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.4
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394
0.9406 0.9418 0.9429 0.9441 1.5
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.6
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.7
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.8
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 1.9
2.0 0.9772 0.9778 0,9783 0,9788 0,9793 0.9798 0.9803 0.9808 0,9812 0.9817 2.0
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.2
2.3 0.9893 0,9896 0.9898 0.9901 0.9904 0.9906 0,9909 0.9911 0.9913 0.9916 2.3
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.4
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.5
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.6
2.7 0.9965 0.9966
0.9967 0.9968
0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.7
0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.8
0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 2.9
0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.1
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.2
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.3
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.4
.07
.08
.09
A
2
.00
.01
.02
.03
.04
.05
.06
Σ
Areas under the Normal Curve
Q =
Z
.00
-3.4 0.0003 0.0003 0.0003
-3.3 0.0005 0.0005 0.0005
-3.2
.01
.02
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264
-0.3 0.3821 0.3783 0.3745 0.3707
-0.2 0.4207 0.4168 0.4129 0.4090
୧,. -0.1 0.4602 0.4562 0.4522 0.4483
Ai
%
.02
.03
.04
.05
0.0003 0.0003 0.0003
0.0004 0.0004 0.0004
0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040
0.0037
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091
-2.2 0.0139 0.0136 0.0132 0.0129
0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.2
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158
0.0154 0.0150 0.0146 0.0143 -2.1
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 -1.9
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.8
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 -1.7
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.6
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749
0.0735 0.0721 0.0708 0.0694 0.0681 -1.4
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 -1.2
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 -1.1
-1.0
0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 -1.0
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711
0.1685 0.1660 0.1635 0.1611 -0.9
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922
0.1894 0.1867 -0.8
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 -0.7
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 -0.6
田 -0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 -0.5
0.3228 0.3192 0.3156 0.3121 -0.4
0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 -0.3
0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 -0.2
0.4443 0.4404
0.4364 0.4325 0.4286 0.4247 -0.1
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681
.00
.01
.03
.04
.05
.06
.07
.08
.06
.07
.08
0.0003 0.0003
0.0003
0.0004 0.0004 0.0004
.09
༣
2
0.0002 -3.4
0.0003 -3.3
0.0005 -3.2
0.0007 -3.1
0.0039 0.0038
0.0011 0.0010 0.0010 -3.0
0.0015 0.0014 0.0014 -2.9
0.0021 0.0020 0.0019 -2.8
0.0029 0.0028 0.0027 0.0026 -2.7
0.0036 -2.6
0.0048 -2.5
0.0064 -2.4
0.0089 0.0087
0.0084 -2.3
2.8
田
2.9
3.0
0.4641 -0.0
.09
Q
Σ
固](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F364f9b41-b870-44dd-80a1-5484385d0f56%2F67937c33-6675-45a3-8ddf-76a10204d958%2Frijo1zh_processed.png&w=3840&q=75)
Transcribed Image Text:Areas under the Normal Curve
.03
2
.00
.01
.02
.04
.05
.06
.07
.08
.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.0
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.2
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.3
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.5
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.6
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7
0.8 0.7881
0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.0
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.1
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.2
1.3
0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.3
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.4
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394
0.9406 0.9418 0.9429 0.9441 1.5
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.6
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.7
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.8
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 1.9
2.0 0.9772 0.9778 0,9783 0,9788 0,9793 0.9798 0.9803 0.9808 0,9812 0.9817 2.0
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.2
2.3 0.9893 0,9896 0.9898 0.9901 0.9904 0.9906 0,9909 0.9911 0.9913 0.9916 2.3
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.4
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.5
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.6
2.7 0.9965 0.9966
0.9967 0.9968
0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.7
0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.8
0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 2.9
0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.1
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.2
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.3
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.4
.07
.08
.09
A
2
.00
.01
.02
.03
.04
.05
.06
Σ
Areas under the Normal Curve
Q =
Z
.00
-3.4 0.0003 0.0003 0.0003
-3.3 0.0005 0.0005 0.0005
-3.2
.01
.02
-0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264
-0.3 0.3821 0.3783 0.3745 0.3707
-0.2 0.4207 0.4168 0.4129 0.4090
୧,. -0.1 0.4602 0.4562 0.4522 0.4483
Ai
%
.02
.03
.04
.05
0.0003 0.0003 0.0003
0.0004 0.0004 0.0004
0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011
-2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021
-2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040
0.0037
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049
-2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091
-2.2 0.0139 0.0136 0.0132 0.0129
0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.2
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158
0.0154 0.0150 0.0146 0.0143 -2.1
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 -1.9
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
-1.8
-1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 -1.7
-1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 -1.6
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5
-1.4 0.0808 0.0793 0.0778 0.0764 0.0749
0.0735 0.0721 0.0708 0.0694 0.0681 -1.4
-1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3
-1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 -1.2
-1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 -1.1
-1.0
0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 -1.0
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711
0.1685 0.1660 0.1635 0.1611 -0.9
-0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922
0.1894 0.1867 -0.8
-0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148 -0.7
-0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 -0.6
田 -0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 -0.5
0.3228 0.3192 0.3156 0.3121 -0.4
0.3669 0.3632 0.3594 0.3557 0.3520 0.3483 -0.3
0.4052 0.4013 0.3974 0.3936 0.3897 0.3859 -0.2
0.4443 0.4404
0.4364 0.4325 0.4286 0.4247 -0.1
-0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681
.00
.01
.03
.04
.05
.06
.07
.08
.06
.07
.08
0.0003 0.0003
0.0003
0.0004 0.0004 0.0004
.09
༣
2
0.0002 -3.4
0.0003 -3.3
0.0005 -3.2
0.0007 -3.1
0.0039 0.0038
0.0011 0.0010 0.0010 -3.0
0.0015 0.0014 0.0014 -2.9
0.0021 0.0020 0.0019 -2.8
0.0029 0.0028 0.0027 0.0026 -2.7
0.0036 -2.6
0.0048 -2.5
0.0064 -2.4
0.0089 0.0087
0.0084 -2.3
2.8
田
2.9
3.0
0.4641 -0.0
.09
Q
Σ
固
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step 1: Provide given information
VIEWStep 2: Define the variable
VIEWStep 3: a) Find the probability that the trip will take at least half an hour
VIEWStep 4: b) Find the percentage of time the lawyer is late
VIEWStep 5: c) Find the probability that the lawyer misses coffee
VIEWStep 6: d) Find the time length above which it is slowest 15% of trips
VIEWStep 7: e) Find the probability that 2 of next 3 trips will take at least half an hour
VIEWSolution
VIEWStep by step
Solved in 8 steps with 69 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)