A) Identify the range of optimality for each objective function coefficient. (If there is no upper or lower limit, enter NO LIMIT.) E1________to________ S  ________to________ D ________to________    (b) Suppose the profit for the economy model is increased by $6 per unit, the profit for the standard model is decreased by $2 per unit, and the profit for the deluxe model is increased by $4 per unit. What will the new optimal solution be? E units S units D units profit$  (c) Identify the range of feasibility for the right-hand-side values. (If there is no upper or lower limit, enter NO LIMIT.) constraint 1  ________to________ constraint 2 ________to________ constraint 3 ________to________

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Quality Air Conditioning manufactures three home air conditioners: an economy model, a standard model, and a deluxe model. The profits per unit are $63, $95, and $135, respectively. The production requirements per unit are as follows:
  Number of
Fans
Number of
Cooling Coils
Manufacturing
Time (hours)
Economy 1 1 8
Standard 1 2 12
Deluxe 1 4 14
For the coming production period, the company has 240 fan motors, 300 cooling coils, and 2,600 hours of manufacturing time available. How many economy models (E), standard models (S), and deluxe models (D) should the company produce in order to maximize profit? The linear programming model for the problem is as follows:
Max     63E  +  95S  +  135D      
s.t.          
  1E  +  1S  +  1D  ≤  240     Fan motors
  1E  +  2S  +  4D  ≤  300     Cooling coils
  8E  +  12S  +  14D  ≤  2,600     Manufacturing time
          E, S, D  ≥  0    
The computer solution is shown below.
Optimal Objective Value = 17040.00000
Variable Value Reduced Cost
E 180.00000 0.00000
S 60.00000 0.00000
D 0.00000 −24.00000
Constraint Slack/Surplus Dual Value
1 0.00000 31.00000
2 0.00000 32.00000
3 440.00000 0.00000
Variable Objective
Coefficient
Allowable
Increase
Allowable
Decrease
E 63.00000 12.00000 15.50000
S 95.00000 31.00000 8.00000
D 135.00000 24.00000 Infinite
Constraint RHS
Value
Allowable
Increase
Allowable
Decrease
1 240.00000 60.00000 90.00000
2 300.00000 110.00000 60.00000
3 2600.00000 Infinite 440.00000
A) Identify the range of optimality for each objective function coefficient. (If there is no upper or lower limit, enter NO LIMIT.)
E1________to________
S  ________to________
D ________to________   
(b)
Suppose the profit for the economy model is increased by $6 per unit, the profit for the standard model is decreased by $2 per unit, and the profit for the deluxe model is increased by $4 per unit. What will the new optimal solution be?
E units
S units
D units
profit$ 
(c)
Identify the range of feasibility for the right-hand-side values. (If there is no upper or lower limit, enter NO LIMIT.)
constraint 1  ________to________
constraint 2 ________to________
constraint 3 ________to________ 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,