A high-performance microprocessor design requires 200 million logic gates and is placed in apackage that can dissipate 100 W. (a) What is theaverage power that can be dissipated by each logicgate on the chip? (b) If a supply voltage of 1.8 V isused, how much current can be used by each gate?Assume a 33 percent duty cycle. (c) If the averagegate delay for these circuits must be 1 ns, what isthe power-delay product required for the circuits inthis design?
A high-performance microprocessor design requires 200 million logic gates and is placed in apackage that can dissipate 100 W. (a) What is theaverage power that can be dissipated by each logicgate on the chip? (b) If a supply voltage of 1.8 V isused, how much current can be used by each gate?Assume a 33 percent duty cycle. (c) If the averagegate delay for these circuits must be 1 ns, what isthe power-delay product required for the circuits inthis design?
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
A high-performance microprocessor design requires 200 million logic gates and is placed in a
package that can dissipate 100 W. (a) What is the
average power that can be dissipated by each logic
gate on the chip? (b) If a supply voltage of 1.8 V is
used, how much current can be used by each gate?
Assume a 33 percent duty cycle. (c) If the average
gate delay for these circuits must be 1 ns, what is
the power-delay product required for the circuits in
this design?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,