A high-pressure gas cylinder contains 50.0 L of toxic gas at a pressure of 1.55 × 107 Pa and a temperature of 25.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (-78.5°C) to reduce the leak rate and pressure so that it can be safely repaired. a. What is the final pressure, in pascals, in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? b. What is the final pressure, in pascals, if one-tenth of the gas escapes during this process? c. To what temperature, in kelvins, must the tank be cooled from its initial state to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there is no leakage during cooling)?
A high-pressure gas cylinder contains 50.0 L of toxic gas at a pressure of 1.55 × 107 Pa and a temperature of 25.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (-78.5°C) to reduce the leak rate and pressure so that it can be safely repaired. a. What is the final pressure, in pascals, in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? b. What is the final pressure, in pascals, if one-tenth of the gas escapes during this process? c. To what temperature, in kelvins, must the tank be cooled from its initial state to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there is no leakage during cooling)?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
A high-pressure gas cylinder contains 50.0 L of toxic gas at a pressure of 1.55 × 107 Pa and a temperature of 25.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (-78.5°C) to reduce the leak rate and pressure so that it can be safely repaired.
a. What is the final pressure, in pascals, in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change?
b. What is the final pressure, in pascals, if one-tenth of the gas escapes during this process?
c. To what temperature, in kelvins, must the tank be cooled from its initial state to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there is no leakage during cooling)? |
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON