A heating element made of tungsten wire is connected to a large battery that has negligible internal resistance. When the heating element reaches 80.0°C, it consumes electrical energy at a rate of 480 W. Assume that the temperature coefficient of resistivity has the value given in Table 25.2 in the textbook and that it is constant over the temperature range in this problem. In the equation R(T) = Ro[1+a(T - To)] take To to be 20.0°C.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A heating element made of tungsten wire connected to a large
battery that has negligible internal resistance. When the heating
element reaches 80.0°C, it consumes electrical energy at a rate of
480 W. Assume that the temperature coefficient of resistivity has the
value given in Table 25.2 in the textbook and that it is constant over
the temperature range in this problem. In the equation
R(T) = Ro [1 + a(T - To)]
take To to be 20.0°C.
Part A
What is its power consumption when the temperature of the heating element is 110.0°C?
Express your answer with the appropriate units.
P =
Submit
Value
Provide Feedback
Request Answer
Units
?
Transcribed Image Text:A heating element made of tungsten wire connected to a large battery that has negligible internal resistance. When the heating element reaches 80.0°C, it consumes electrical energy at a rate of 480 W. Assume that the temperature coefficient of resistivity has the value given in Table 25.2 in the textbook and that it is constant over the temperature range in this problem. In the equation R(T) = Ro [1 + a(T - To)] take To to be 20.0°C. Part A What is its power consumption when the temperature of the heating element is 110.0°C? Express your answer with the appropriate units. P = Submit Value Provide Feedback Request Answer Units ?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY