A gas turbine uses two compression and two expansion stages, each stage having a pressure ratió of 4. The working fluid is intercooled between the two compression stages and reheated between the two expansion stages. Air enters the gas turbine at 100kPa and 17°C. The combustion chamber and reheat stage each contribute 300kJ/kg of heat. A regenerator uses exhausted gases to increase the working fluid temperature prior to the combustion chamber by 20°C. Assume constant thermal properties of air evaluated at 300K during your solution. Assume all turbine and compressor stages are isentropic. Draw the T-s diagram based on the numbering convention in the schematic below. Determine the system's thermal efficiency. Determine the required air mass flow rate to obtain an output of 10MW.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A gas turbine uses two compression and two expansion stages, each stage having a pressure ratio of 4.
The working fluid is intercooled between the two compression stages and reheated between the two
expansion stages. Air enters the gas turbine at 100kPa and 17°C. The combustion chamber and reheat
stage each contribute 300kJ/kg of heat. A regenerator uses exhausted gases to increase the working
fluid temperature prior to the combustion chamber by 20°C.
Assume constant thermal properties of air evaluated at 300K during your solution. Assume all turbine
and compressor stages are isentropic.
Draw the T-s diagram based on the numbering convention in the schematic below.
Determine the system's thermal efficiency.
Determine the required air mass flow rate to obtain an output of 10MW.
26 REMEWS
REHEAT
JNTER.
Ti
C2
Come
REGEN.
Scannad wim Camirwner
Transcribed Image Text:A gas turbine uses two compression and two expansion stages, each stage having a pressure ratio of 4. The working fluid is intercooled between the two compression stages and reheated between the two expansion stages. Air enters the gas turbine at 100kPa and 17°C. The combustion chamber and reheat stage each contribute 300kJ/kg of heat. A regenerator uses exhausted gases to increase the working fluid temperature prior to the combustion chamber by 20°C. Assume constant thermal properties of air evaluated at 300K during your solution. Assume all turbine and compressor stages are isentropic. Draw the T-s diagram based on the numbering convention in the schematic below. Determine the system's thermal efficiency. Determine the required air mass flow rate to obtain an output of 10MW. 26 REMEWS REHEAT JNTER. Ti C2 Come REGEN. Scannad wim Camirwner
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 13 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY