(a) For x, y ER, we say ~ y if x - y ≤ 2. (b) For m, n = Z, we say m ~ n if m | n. Again, it stands for “m divides n". (c) For (x₁, y₁), (x2, Y2) € R², we say (x₁, y₁) x2 + 2y2. (d) For x, y = R, we say x~ y if x 1. Y = (x2, y2) if x₁ + 2y1 =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

For each of the following, is ~ reflexive? Symmetric? Transitive? If not, provide a counterexample. 

-------

This means that you do not need to give a proof if ~ is actually reflexive/symmetric/transitive. You only have to give counterexamples in case ~ is not reflexive/symmetric/transitive.

(a) For x, y = R, we say x~ y if x - y ≤ 2.
(b) For m, n = Z, we say m ~ n if m | n. Again, it stands for "m divides
n”.
(c) For (x₁, y₁), (x2, Y2) € R², we say (x₁, y₁)
x₂ + 2y₂.
(d) For x, y = R, we say x ~ y if X
=
Y
1.
(x2, y2) if x₁ + 2y₁
=
Transcribed Image Text:(a) For x, y = R, we say x~ y if x - y ≤ 2. (b) For m, n = Z, we say m ~ n if m | n. Again, it stands for "m divides n”. (c) For (x₁, y₁), (x2, Y2) € R², we say (x₁, y₁) x₂ + 2y₂. (d) For x, y = R, we say x ~ y if X = Y 1. (x2, y2) if x₁ + 2y₁ =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,