Axiom 1. A → (B → A) Axiom 2. (A → (B → C)) → ((A → B) → (A → C)) Axiom 3. (¬A → ¬B) → (B → A) Proof rules allowed: MP, CP, HS (last two proved in class) Consider the following proof for: A → ¬A Proof: 1.A 2.¬A → (¬¬A → ¬A) 3.¬¬A → ¬A 4.(¬¬A → ¬A) → (A → ¬A) 5.A → ¬A Which of the following is most accurate? Correct proof Incorrect at line 2 Incorrect at line 3 Incorrect at line 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Consider the F-L Axioms:**

- **Axiom 1.** \( A \rightarrow (B \rightarrow A) \)
- **Axiom 2.** \( (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \)
- **Axiom 3.** \( (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \)

**Proof rules allowed:** MP (Modus Ponens), CP (Conditional Proof), HS (Hypothetical Syllogism; last two proved in class)

---

Consider the following proof for:

\[ A \rightarrow \neg A \]

**Proof:**

1. \( A \)
2. \( \neg A \rightarrow (\neg \neg A \rightarrow \neg A) \)
3. \( \neg \neg A \rightarrow \neg A \)
4. \( (\neg \neg A \rightarrow \neg A) \rightarrow (A \rightarrow \neg A) \)
5. \( A \rightarrow \neg A \)

---

**Which of the following is most accurate?**

- ○ Correct proof
- ○ Incorrect at line 2
- ○ Incorrect at line 3
- ○ Incorrect at line 4
Transcribed Image Text:**Consider the F-L Axioms:** - **Axiom 1.** \( A \rightarrow (B \rightarrow A) \) - **Axiom 2.** \( (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \) - **Axiom 3.** \( (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \) **Proof rules allowed:** MP (Modus Ponens), CP (Conditional Proof), HS (Hypothetical Syllogism; last two proved in class) --- Consider the following proof for: \[ A \rightarrow \neg A \] **Proof:** 1. \( A \) 2. \( \neg A \rightarrow (\neg \neg A \rightarrow \neg A) \) 3. \( \neg \neg A \rightarrow \neg A \) 4. \( (\neg \neg A \rightarrow \neg A) \rightarrow (A \rightarrow \neg A) \) 5. \( A \rightarrow \neg A \) --- **Which of the following is most accurate?** - ○ Correct proof - ○ Incorrect at line 2 - ○ Incorrect at line 3 - ○ Incorrect at line 4
The following proof for the tautology 

\[
(A \land B \to C) \to (A \to (B \to C))
\]

contains two nested sub-proofs. What line numbers correspond to the two sub-proofs?

**Proof:**

1. \( (A \land B) \to C \)  \( P \)

2. \( A \)  \( P \)

3. \( B \)  \( P \)

4. \( A \land B \)  \( 2, 3 \) Conj

5. \( C \)  \( 1, 4 \) MP

6. \( B \to C \)  \( 3, 5 \) CP

7. \( A \to (B \to C) \)  \( 2, 6 \) CP

   QED \( 1, 7 \) CP

**Options:**

- ○ Lines 2-6 and lines 4-6
- ○ Lines 2-6 and lines 3-5
- ○ Lines 3-6 and lines 3-5
- ○ Lines 3-6 and lines 4-5
Transcribed Image Text:The following proof for the tautology \[ (A \land B \to C) \to (A \to (B \to C)) \] contains two nested sub-proofs. What line numbers correspond to the two sub-proofs? **Proof:** 1. \( (A \land B) \to C \) \( P \) 2. \( A \) \( P \) 3. \( B \) \( P \) 4. \( A \land B \) \( 2, 3 \) Conj 5. \( C \) \( 1, 4 \) MP 6. \( B \to C \) \( 3, 5 \) CP 7. \( A \to (B \to C) \) \( 2, 6 \) CP QED \( 1, 7 \) CP **Options:** - ○ Lines 2-6 and lines 4-6 - ○ Lines 2-6 and lines 3-5 - ○ Lines 3-6 and lines 3-5 - ○ Lines 3-6 and lines 4-5
Expert Solution
Step 1

"Since you have asked multiple questions, we will solve the first question for you. If you want any specific question to be solved then please specify the question number or post only that question."

Consider the F-L Axioms:

Axiom 1. ABA

Axiom 2. ABCABAC

Axiom 3. ~A~BBA

Its proof is given by

1. A2. ~A~~A~A3. ~~A~A 4. ~~A~AA~A5. ~A A

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,