Axiom 1. A → (B → A) Axiom 2. (A → (B → C)) → ((A → B) → (A → C)) Axiom 3. (¬A → ¬B) → (B → A) Proof rules allowed: MP, CP, HS (last two proved in class) Consider the following proof for: A → ¬A Proof: 1.A 2.¬A → (¬¬A → ¬A) 3.¬¬A → ¬A 4.(¬¬A → ¬A) → (A → ¬A) 5.A → ¬A Which of the following is most accurate? Correct proof Incorrect at line 2 Incorrect at line 3 Incorrect at line 4
Axiom 1. A → (B → A) Axiom 2. (A → (B → C)) → ((A → B) → (A → C)) Axiom 3. (¬A → ¬B) → (B → A) Proof rules allowed: MP, CP, HS (last two proved in class) Consider the following proof for: A → ¬A Proof: 1.A 2.¬A → (¬¬A → ¬A) 3.¬¬A → ¬A 4.(¬¬A → ¬A) → (A → ¬A) 5.A → ¬A Which of the following is most accurate? Correct proof Incorrect at line 2 Incorrect at line 3 Incorrect at line 4
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Consider the F-L Axioms:**
- **Axiom 1.** \( A \rightarrow (B \rightarrow A) \)
- **Axiom 2.** \( (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \)
- **Axiom 3.** \( (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \)
**Proof rules allowed:** MP (Modus Ponens), CP (Conditional Proof), HS (Hypothetical Syllogism; last two proved in class)
---
Consider the following proof for:
\[ A \rightarrow \neg A \]
**Proof:**
1. \( A \)
2. \( \neg A \rightarrow (\neg \neg A \rightarrow \neg A) \)
3. \( \neg \neg A \rightarrow \neg A \)
4. \( (\neg \neg A \rightarrow \neg A) \rightarrow (A \rightarrow \neg A) \)
5. \( A \rightarrow \neg A \)
---
**Which of the following is most accurate?**
- ○ Correct proof
- ○ Incorrect at line 2
- ○ Incorrect at line 3
- ○ Incorrect at line 4](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff43fe492-0086-4aac-90eb-2b796e708e5e%2F9c9d14fe-9c2d-4a41-acd1-9e56ce3a9fb5%2F55ftz69_processed.png&w=3840&q=75)
Transcribed Image Text:**Consider the F-L Axioms:**
- **Axiom 1.** \( A \rightarrow (B \rightarrow A) \)
- **Axiom 2.** \( (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \)
- **Axiom 3.** \( (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A) \)
**Proof rules allowed:** MP (Modus Ponens), CP (Conditional Proof), HS (Hypothetical Syllogism; last two proved in class)
---
Consider the following proof for:
\[ A \rightarrow \neg A \]
**Proof:**
1. \( A \)
2. \( \neg A \rightarrow (\neg \neg A \rightarrow \neg A) \)
3. \( \neg \neg A \rightarrow \neg A \)
4. \( (\neg \neg A \rightarrow \neg A) \rightarrow (A \rightarrow \neg A) \)
5. \( A \rightarrow \neg A \)
---
**Which of the following is most accurate?**
- ○ Correct proof
- ○ Incorrect at line 2
- ○ Incorrect at line 3
- ○ Incorrect at line 4
![The following proof for the tautology
\[
(A \land B \to C) \to (A \to (B \to C))
\]
contains two nested sub-proofs. What line numbers correspond to the two sub-proofs?
**Proof:**
1. \( (A \land B) \to C \) \( P \)
2. \( A \) \( P \)
3. \( B \) \( P \)
4. \( A \land B \) \( 2, 3 \) Conj
5. \( C \) \( 1, 4 \) MP
6. \( B \to C \) \( 3, 5 \) CP
7. \( A \to (B \to C) \) \( 2, 6 \) CP
QED \( 1, 7 \) CP
**Options:**
- ○ Lines 2-6 and lines 4-6
- ○ Lines 2-6 and lines 3-5
- ○ Lines 3-6 and lines 3-5
- ○ Lines 3-6 and lines 4-5](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff43fe492-0086-4aac-90eb-2b796e708e5e%2F9c9d14fe-9c2d-4a41-acd1-9e56ce3a9fb5%2Fyqw6d2m_processed.png&w=3840&q=75)
Transcribed Image Text:The following proof for the tautology
\[
(A \land B \to C) \to (A \to (B \to C))
\]
contains two nested sub-proofs. What line numbers correspond to the two sub-proofs?
**Proof:**
1. \( (A \land B) \to C \) \( P \)
2. \( A \) \( P \)
3. \( B \) \( P \)
4. \( A \land B \) \( 2, 3 \) Conj
5. \( C \) \( 1, 4 \) MP
6. \( B \to C \) \( 3, 5 \) CP
7. \( A \to (B \to C) \) \( 2, 6 \) CP
QED \( 1, 7 \) CP
**Options:**
- ○ Lines 2-6 and lines 4-6
- ○ Lines 2-6 and lines 3-5
- ○ Lines 3-6 and lines 3-5
- ○ Lines 3-6 and lines 4-5
Expert Solution

Step 1
"Since you have asked multiple questions, we will solve the first question for you. If you want any specific question to be solved then please specify the question number or post only that question."
Consider the F-L Axioms:
Axiom 1.
Axiom 2.
Axiom 3.
Its proof is given by
Step by step
Solved in 3 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

