(a) For a black body, the temperature and the wavelength of emission maximum, Amax, are related 2 = (3) ²₂ max by Wien's law, , where c₂ = hc/k. (i) Write a simplified Wien's law expression in a form of an equation of straight line, (i.e., y = mx + c). (ii) Identify an independent variable and the slope/gradient from (i) above. (iii) Values of Amax from a small pinhole in an electrically heated container were determined at a series of temperatures, and the results are given below. Draw a graph and deduce a value for Planck's constant.
(a) For a black body, the temperature and the wavelength of emission maximum, Amax, are related 2 = (3) ²₂ max by Wien's law, , where c₂ = hc/k. (i) Write a simplified Wien's law expression in a form of an equation of straight line, (i.e., y = mx + c). (ii) Identify an independent variable and the slope/gradient from (i) above. (iii) Values of Amax from a small pinhole in an electrically heated container were determined at a series of temperatures, and the results are given below. Draw a graph and deduce a value for Planck's constant.
Related questions
Question

Transcribed Image Text:(a) For a black body, the temperature and the wavelength of emission maximum, Amax, are related
AT=
T = ( 1 ) ²₂
by Wien's law,
, where c₂ = hc/k.
(i) Write a simplified Wien's law expression in a form of an equation of straight line, (i.e., y
= mx + c).
(ii) Identify an independent variable and the slope/gradient from (i) above.
(iii) Values of Amax from a small pinhole in an electrically heated container were determined
at a series of temperatures, and the results are given below. Draw a graph and deduce
a value for Planck's constant.
T(°C)
1000
Amax(nm) 2181
1500
1600
2000
1240
2500
1035
3000
878
3500
763
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
