A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. (a) What is the speed of sound in the flute? A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. (b) What is the wavelength of the first harmonic? Consider the flute to be a pipe open at both ends A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. (c)Consider the flute to be a pipe open at both ends and find its length, assuming this frequency is the fundamental frequency A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. A second player, nearby in a colder room, also attempts to play middle C on an identical flute. A beat frequency of 3.00 beats/s is heard. (e) What is the speed of sound in the second room? A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. A second player, nearby in a colder room, also attempts to play middle C on an identical flute. A beat frequency of 3.00 beats/s is heard. What is the temperature of the room? (f) What is the temperature in the second room?
Properties of sound
A sound wave is a mechanical wave (or mechanical vibration) that transit through media such as gas (air), liquid (water), and solid (wood).
Quality Of Sound
A sound or a sound wave is defined as the energy produced due to the vibrations of particles in a medium. When any medium produces a disturbance or vibrations, it causes a movement in the air particles which produces sound waves. Molecules in the air vibrate about a certain average position and create compressions and rarefactions. This is called pitch which is defined as the frequency of sound. The frequency is defined as the number of oscillations in pressure per second.
Categories of Sound Wave
People perceive sound in different ways, like a medico student takes sound as vibration produced by objects reaching the human eardrum. A physicist perceives sound as vibration produced by an object, which produces disturbances in nearby air molecules that travel further. Both of them describe it as vibration generated by an object, the difference is one talks about how it is received and other deals with how it travels and propagates across various mediums.
A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. (a) What is the speed of sound in the flute?
A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. (b) What is the wavelength of the first harmonic? Consider the flute to be a pipe open at both ends
A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. (c)Consider the flute to be a pipe open at both ends and find its length, assuming this frequency is the fundamental frequency
A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. A second player, nearby in a colder room, also attempts to play middle C on an identical flute. A beat frequency of 3.00 beats/s is heard. (e) What is the speed of sound in the second room?
A flute is designed so that it plays a frequency of 268.2 Hz, when all the holes are covered and the temperature is 18.2°C. A second player, nearby in a colder room, also attempts to play middle C on an identical flute. A beat frequency of 3.00 beats/s is heard. What is the temperature of the room? (f) What is the temperature in the second room?

Given,
Fundamental frequency = 268.2 Hz
Temperature = 18.2 degree celsius
(a)
The speed of sound is
(b)
The wavelength is
(c)
Length of flute
Step by step
Solved in 3 steps









