Your experiments on a particular insulator indicate that at 20°C, the average speed of sound in the insulator is vi = 8500 m/s and its bulk modulus is Bi = 370 GPa. Experimental results from your colleague show that a certain metal alloy has a density of ρm = 6500 kg/m3 and a bulk modulus of Bm = 110 GPa. a. Calculate the density of the insulator ρi in kilograms per cubic meter. b. Calculate the speed of sound vm in the metal alloy in meters per second. c. If the sound traveled as indicated in the structure in figure 1, emerging from the insulator at time ti and the alloy at time tm, determine Δt = tm - ti in seconds. The length of the structure is L = 1.0 m.
Properties of sound
A sound wave is a mechanical wave (or mechanical vibration) that transit through media such as gas (air), liquid (water), and solid (wood).
Quality Of Sound
A sound or a sound wave is defined as the energy produced due to the vibrations of particles in a medium. When any medium produces a disturbance or vibrations, it causes a movement in the air particles which produces sound waves. Molecules in the air vibrate about a certain average position and create compressions and rarefactions. This is called pitch which is defined as the frequency of sound. The frequency is defined as the number of oscillations in pressure per second.
Categories of Sound Wave
People perceive sound in different ways, like a medico student takes sound as vibration produced by objects reaching the human eardrum. A physicist perceives sound as vibration produced by an object, which produces disturbances in nearby air molecules that travel further. Both of them describe it as vibration generated by an object, the difference is one talks about how it is received and other deals with how it travels and propagates across various mediums.
Your experiments on a particular insulator indicate that at 20°C, the average speed of sound in the insulator is vi = 8500 m/s and its bulk modulus is Bi = 370 GPa. Experimental results from your colleague show that a certain metal alloy has a density of ρm = 6500 kg/m3 and a bulk modulus of Bm = 110 GPa.
a. Calculate the density of the insulator ρi in kilograms per cubic meter.
b. Calculate the speed of sound vm in the metal alloy in meters per second.
|
d. Find the total amount of time t, in seconds, it takes to travel through the structure as indicated in figure 2. The length of the structure is L = 1.0 m.
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 7 images
What happens to the wavelength of sound waves in this material relative to air?