(a) Differentiate between free and forced convection with examples. (b) Define Nusselt (Nu), Prandtl (Pr), Reynolds (Re) and Grashof (Gr) dimensionless numbers. State which numbers are used in free and forced convection to determine the heat transfer coefficient. (c) A vertical pipe 90 mm diameter and 2.5 m height is maintained at a constant temperature of 125 °C, The pipe is surrounded by still atmospheric air at 25 °C, Find heat loss by natural convection. Properties of water at 75 °C: Density = 1.0145 kg/m³ Kinematic viscosity = 20.55 x10-6 m²/s Prandtl number (Pr) = 0.693 %3D Thermal conductivity (k) = 30.06 x 10-3 W/m K g ×ß x L³ × AT V2 Grashof number, Gr = Nu = 0.10(GrPr)0.333

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Q1
(a) Differentiate between free and forced convection with examples.
(b) Define Nusselt (Nu), Prandtl (Pr), Reynolds (Re) and Grashof (Gr)
dimensionless numbers. State which numbers are used in free and forced
convection to determine the heat transfer coefficient.
(c) A vertical pipe 90 mm diameter and 2.5 m height is maintained at a
constant temperature of 125 °C, The pipe is surrounded by still
atmospheric air at 25 °C. Find heat loss by natural convection.
Properties of water at 75 °C:
Density =
1.0145 kg/m³
Kinematic viscosity = 20.55 x10-6 m²/s
Prandtl number (Pr) = 0.693
Thermal conductivity (k) = 30.06 x 10-3 W/m K
g × ß x L³ × AT
Grashof number, Gr =
V²
Nu =
0.10(GrPr)0.333
Transcribed Image Text:Q1 (a) Differentiate between free and forced convection with examples. (b) Define Nusselt (Nu), Prandtl (Pr), Reynolds (Re) and Grashof (Gr) dimensionless numbers. State which numbers are used in free and forced convection to determine the heat transfer coefficient. (c) A vertical pipe 90 mm diameter and 2.5 m height is maintained at a constant temperature of 125 °C, The pipe is surrounded by still atmospheric air at 25 °C. Find heat loss by natural convection. Properties of water at 75 °C: Density = 1.0145 kg/m³ Kinematic viscosity = 20.55 x10-6 m²/s Prandtl number (Pr) = 0.693 Thermal conductivity (k) = 30.06 x 10-3 W/m K g × ß x L³ × AT Grashof number, Gr = V² Nu = 0.10(GrPr)0.333
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY