(a) defibrillator sends a 6 A current through the chest of a patient by applying a 11000 V potential as in the figure. What is the resistance of the path (through the wire and the body)? -aira R= (b) The defibrillator paddles make contact with the patient through a conducting gel that greatly reduces the path resistance. To understand the importance of using the gel, discuss the difficulties that would ensue if a larger voltage were used to produce the same current through the patient, but with the path having perhaps 50 times the resistance by finding the ratio, P no-gel P gel e- ΚΩ (Hint: The current must be about the same, so a higher voltage would imply greater power. Use this equation for power: P = PR.) What difficulties arise when no gel is used? a. The voltage is too high for the human body even when the current is the same. b. There is a risk of skin burns because of the high power deposited.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
100%
(a)
defibrillator sends a 6 A current through the chest of a patient by applying a 11000 V potential
as in the figure. What is the resistance of the path (through the wire and the body)?
-aira
R=
(b) The defibrillator paddles make contact with the patient through a conducting gel that greatly
reduces the path resistance. To understand the importance of using the gel, discuss the difficulties
that would ensue if a larger voltage were used to produce the same current through the patient, but
with the path having perhaps 50 times the resistance by finding the ratio,
P
no-gel
P
gel
e-
ΚΩ
(Hint: The current must be about the same, so a higher voltage would imply greater power. Use this
equation for power: P = PR.)
What difficulties arise when no gel is used?
a. The voltage is too high for the human body even when the current is the same.
b. There is a risk of skin burns because of the high power deposited.
Transcribed Image Text:(a) defibrillator sends a 6 A current through the chest of a patient by applying a 11000 V potential as in the figure. What is the resistance of the path (through the wire and the body)? -aira R= (b) The defibrillator paddles make contact with the patient through a conducting gel that greatly reduces the path resistance. To understand the importance of using the gel, discuss the difficulties that would ensue if a larger voltage were used to produce the same current through the patient, but with the path having perhaps 50 times the resistance by finding the ratio, P no-gel P gel e- ΚΩ (Hint: The current must be about the same, so a higher voltage would imply greater power. Use this equation for power: P = PR.) What difficulties arise when no gel is used? a. The voltage is too high for the human body even when the current is the same. b. There is a risk of skin burns because of the high power deposited.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
DC Generator
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,