A couple comes into the family counseling center and wants information on genetic counseling. They are thinking of starting a family but the wife has a family history of Tay Sachs disease. Kieran is a genetic counselor who will explain the services available at the center. Kieran’s discussion will include genetic mutation, tests that may be done during pregnancy, and advances being made in genetic therapy. What information can Kieran give the couple regarding the services of the genetic counseling center?
Q: discusses the role of genetics in health status. Do you believe that genetic testing can be helpful…
A: Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or…
Q: I believe that there are many good things that can come out of people getting to design their baby’s…
A: The given essay is related to designing baby genetic material. After mating male and female babies…
Q: Describe the principal functions of the two major groups of adreno-cortical steroids, the…
A: The adrenal cortex that forms the outer layer of the adrenal gland produces polycyclic steroid…
Q: Discuss the advantages and disadvantages of gene therapy. A limitedamount of funding is available…
A: Since the second part of question is based on personal opinion, it cannot be answered by us.
Q: A young man develops skin cancer that does not spread to any other tissues; the mutation responsible…
A: As the mutation has occured in only one parent and that too in a single skin cell, there are very…
Q: A woman claims that either David Spade or Andy Richter is the father of her child. DNA samples are…
A: Southern blot is a tool mainly use in molecular biology. This method is used for the detection of…
Q: Can you please check my answer and make sure it is correct. Question: How can DNA evidence be…
A: DNA can be used to identify criminals with incredible accuracy when biological evidence exists. They…
Q: Organisms that are transgenic ______________.
A: The advent of modern molecular biological techniques has enabled various researchers in creating…
Q: As a genetic counselor, I would recommend Susan and John a blood test for cystic fibrosis. This…
A: Cystic fibrosis screening Pros Early diagnosis for treatment of pancreatic insufficiency Early…
Q: Once created, new combinations of genes will be acted upon by ________________________________
A: New combination of genes are formed either by mutation or by the recombination. New combination of…
Q: A male presenting with clinical features as greater height, poor coordination, less body hair,…
A: Chromosome anomalies usually occur when there is an error in cell division following meiosis or…
Q: Case History: Pre-screening meeting and family history interview. Susan and John enter the testing…
A:
Q: 1. What is Genetically Modified Organism (GMO)?(1-4 sentences only)
A: *Since you have asked multiple question, we will solve the first question for you. If you want any…
Q: 24) Sickle cell disease is a recessive trait. Linda has sickle cell disease. Her brother does not.…
A: For being affected by sickle cell disease, an individual needs one disease-causing gene from his…
Q: Choose an ICD-10-CM coding convention or guideline. Describe the importance of the coding convention…
A: ICD-10-CM guidelines are decided by four Regulatory authorities are American Hospital Association…
A couple comes into the family counseling center and wants information on genetic counseling. They are thinking of starting a family but the wife has a family history of Tay Sachs disease. Kieran is a genetic counselor who will explain the services available at the center. Kieran’s discussion will include genetic mutation, tests that may be done during pregnancy, and advances being made in genetic therapy. What information can Kieran give the couple regarding the services of the genetic counseling center?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
- A couple has had a child born with neurofibromatosis. They come to your genetic counseling office for help. After taking an extensive family history, you determine that there is no history of this disease on either side of the family. The couple wants to have another child and wants to be advised about the risks of that child having neurofibromatosis. What advice do you give them?You are a genetic counselor, and your patient has asked to be tested to determine if she carries a gene that predisposes her to early-onset cancer. If your patient has this gene, there is a 50/50 chance that all of her siblings inherited the gene as well; there is also a 50/50 chance that it will be passed on to their offspring. Your patient is concerned about confidentiality and does not want anyone in her family to know she is being tested, including her identical twin sister. Your patient is tested and found to carry a mutant allele that gives her an 85% lifetime risk of developing breast cancer and a 60% lifetime risk of developing ovarian cancer. At the result-disclosure session, she once again reiterates that she does not want anyone in her family to know her test results. a. Knowing that a familial mutation is occurring in this family, what would be your next course of action in this case? b. Is it your duty to contact members of this family despite the request of your patient? Where do your obligations lie: with your patient or with the patients family? Would it be inappropriate to try to persuade the patient to share her results with her family members?Jan is concerned about using ART. She wants to be the genetic mother and have Darryl be the genetic father of any children they have. What methods of ART would you recommend to this couple? Jan, a 32-year-old woman, and her husband, Darryl, have been married for 7 years. They have attempted to have a baby on several occasions. Five years ago, they had a first-trimester miscarriage, followed by an ectopic pregnancy later the same year. Jan continued to see her OB/GYN physician for infertility problems but was very dissatisfied with the response. After four miscarriages, she went to see a fertility specialist, who diagnosed her with severe endometriosis and polycystic ovarian disease (detected by hormone studies). The infertility physician explained that these two conditions were hampering her ability to become pregnant and thus making her infertile. She referred Jan to a genetic counselor. At the appointment, the counselor explained to Jan that one form of endometriosis (MIM 131200) can be a genetic disorder, and that polycystic ovarian disease can also be a genetic disorder (MIM 184700) and is one of the most common reproductive disorders among women. The counselor recommended that a detailed family history of both Jan and Darryl would help establish whether Jans problems have a genetic component and whether any of her potential daughters would be at risk for one or both of these disorders. In the meantime, Jan is taking hormones, and she and Darryl are considering alternative modes of reproduction. Using the information in Figure 16.4, explain the reproductive options that are open to Jan and Darryl.
- James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do James and Sally have any guarantees that the tests and recommendations are scientifically valid?James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do you think that companies should be allowed to market such tests directly to the public, or do you believe that only a physician should be able to order them?James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. What kinds of regulations, if any, should be in place to ensure that the results of these tests are not abused?
- James sees an online ad for an at-home genetic test that promises to deliver personalized nutritional advice based on an individuals genetic profile. The company can test for genetic variations, the advertisement states, that predispose individuals to developing health conditions such as heart disease and bone loss or that affect how they metabolize certain foods. If such variations are detected, the company can provide specific nutritional advice that will help counteract their effects. Always keen to take any steps available to ensure the best possible health for their family, James and his wife (Sally) decide that they both should be tested, as should their 11-year-old daughter (Patty). They order three kits. Once the kits arrive, the family members use cotton swabs to take cell samples from their cheeks and place the swabs in individually labeled envelopes. They mail the envelopes back to the company, along with completed questionnaires regarding their diets. Four weeks later, they receive three individual reports detailing the test results and providing extensive guidelines about what foods they should eat. Among the results is the finding that James has a particular allele in a gene that may make him vulnerable to the presence of free radicals in his cells. The report suggests that he increase his intake of antioxidants, such as vitamins C and E, and highlights a number of foods that are rich in those vitamins. The tests also show that Sally has several genetic variations that indicate that she may be at risk for elevated bone loss. The report recommends that she try to minimize this possibility by increasing her intake of calcium and vitamin D and lists a number of foods she could emphasize in her diet. Finally, the report shows that Patty has a genetic variation that may mean that she has a lowered ability to metabolize saturated fats, putting her at risk for developing heart disease. The report points to ways in which she can lower her intake of saturated fats and lists various types of foods that would be beneficial for her. A number of companies now offer genetic-testing services, promising to deliver personalized nutritional or other advice based on peoples genetic profiles. Generally, these tests fall into two different categories, with individual companies offering unique combinations of the two. The first type of test detects alleles of known genes that encode proteins that play an established role in, for example, counteracting free radicals in cells or in building up bone. In such cases, it is easy to see why individuals carrying alleles that may encode proteins with lower levels of activity may be more vulnerable to free radicals or more susceptible to bone loss. A second type of test examines genetic variations that may have no clear biological significance (i.e., they may not occur within a gene or may not have a detectable effect on gene activity) but have been shown to have a statistically significant correlation with a disease or a particular physiological condition. For example, a variation may frequently be detected in individuals with heart disease even though the reason for the correlation between the variation and the disease may be entirely mysterious. Do you think parents should be able to order such a test for their children? What if the test indicates that a child is at risk for a disease for which there is no known cure?Should he go ahead and enroll on the chance that he would receive the DNA vaccine and that it would be more effective than chemotherapy? Bruce and his parents moved to a semi-tropical region of the United States when he was about 3 years old. He loved to be outside year-round and swim, surf, snorkel, and play baseball. Bruce was fair-skinned, and in his childhood years, was sunburned quite often. In his teen years, he began using sunscreens, and although he never tanned very much, he did not have the painful sunburns of his younger years. After graduation from the local community college, Bruce wanted an outdoor job and was hired at a dive shop. He took people out to one of the local reefs to snorkel and scuba dive. He didnt give a second thought to sun exposure because he used sunscreen. His employer did not provide health insurance, so Bruce did not go for annual checkups, and tried to stay in good health. In his late 20s, Bruce was injured trying to keep a tourist from getting caught between the dive boat and the dock. He went to an internist, who treated his injury and told Bruce he was going to give him a complete physical exam. During the exam, the internist noticed a discolored patch of skin on Bruces back. She told him that she suspected Bruce had skin cancer and referred him to a dermatologist, who biopsied the patch. At a follow-up visit, Bruce was told that he had melanoma, a deadly form of skin cancer. Further testing revealed that the melanoma had spread to his liver and his lungs. The dermatologist explained that treatment options at this stage are limited. The drugs available for chemotherapy have only temporary effects, and surgery is not effective for melanoma at this stage. The dermatologist recommended that Bruce consider entering a clinical trial that was testing a DNA vaccine for melanoma treatment. These vaccines deliver DNA encoding a gene expressed by the cancer cells to the immune system. This primes the immune system to respond by producing large quantities of antibodies that destroy melanoma cells wherever they occur in the body. A clinical trial using one such DNA vaccine was being conducted at a nearby medical center, and Bruce decided to participate. At the study clinic, Bruce learned that he would be in a Phase Ill trial, comparing the DNA vaccine against the standard treatment, which is chemotherapy, and that he would be randomly assigned to receive either the DNA vaccine or the chemotherapy. He was disappointed to learn this. He thought he would be receiving the DNA vaccine.As a physician, you deliver a baby with protruding heels and clenched fists with the second and fifth fingers over-lapping the third and fourth fingers. a. What genetic disorder do you suspect the baby has? b. How do you confirm your suspicion?
- The following family has a history of inherited breast cancer. Betty (grandmother) does not carry the gene. Don, her husband, does. Dons mother and sister had breast cancer. One of Betty and Dons daughters (Sarah) has breast cancer; the other (Karen) does not. Sarahs daughters are in their 30s. Dawn, 33, has breast cancer; Debbie, 31, does not. Debbie is wondering if she will get the disease because she looks like her mother. Dawn is wondering if her 2-year-old daughter (Nicole) will get the disease. a. Draw a pedigree indicating affected individuals and identify all individuals. b. What is the most likely mode of inheritance of this trait? c. What are Dons genotype and phenotype? d. What is the genotype of the unaffected women (Betty and Karen)? e. A genetic marker has been found that maps very close to the gene. Given the following marker data for chromosomes 4 and 17, which chromosome does this gene map to? f. Using the same genetic marker, Debbie and Nicole were tested. The results are shown in the following figure. Based on their genotypes, is either of them at increased risk for breast cancer?You are in charge of a new gene therapy clinic. Two cases have been referred to you for review and possible therapy. Case 1. A mutation in the promoter of a proto-oncogene causes the gene to make too much of its normal product, a receptor protein that promotes cell division. The uncontrolled cell division has caused cancer. Case 2. A mutation in an exon of a tumor-suppressor gene makes this gene nonfunctional. The product of this gene normally suppresses cell division. The mutant gene cannot suppress cell division, and this has led to cancer. What treatment options can you suggest for each case?Genetics in Practice case studies are critical-thinking exercises that allow you to apply your new knowledge of human genetics to real-life problems. Case study Michelle was a 42-year-old woman who had declined counselling and amniocentesis at 16 weeks of pregnancy but was referred for genetic counseling after an abnormal ultrasound at 20 weeks of gestation. After the ultrasound, a number of findings suggested a possible chromosome abnormality in the fetus. The ultrasound showed swelling under the skin at the back of the fetuss neck; shortness of the femur, humerus, and ear length; and underdevelopment of the middle section of the fifth finger. Michelles physician performed an amniocentesis and referred her to the genetics program. Michelle and her husband did not want genetic counseling before receiving the results of the cytogenetic analysis. This was Michelles third pregnancy; she and her husband, Mike, had a 6-year-old daughter and a 3-year-old son. At their next session, the counselor informed the couple that the results revealed trisomy 21, explored their understanding of Down syndrome, and elicited their experiences with people with disabilities. She also reviewed the clinical concerns revealed by the ultrasound and associated anomalies (mild to severe intellectual disability, cardiac defects, and kidney problems). The options available to the couple were outlined. They were provided with a booklet written for parents making choices after the prenatal diagnosis of Down syndrome. After a week of careful deliberation with their family, friends, and clergy, they elected to terminate the pregnancy. Should physicians discourage a 42-year-old woman from having children because of an increased chance of a chromosomal abnormality?