A converging elbow turns water through an angle of 135º in a vertical plane. The flow cross-sectional diameter is 400 mm at the elbow inlet, section (1), and 200 mm at the elbow outlet,section (2). The elbow flow passage volume is 0.2 m3between sections (1) and (2). The water volume flowrate is 0.4 m3/s, and the elbow inlet and outlet pressures are 150 kPa(gage) and 90 kPa(gage). The empty elbow mass is 12 kg. Calculate the horizontal and vertical anchoring forces required to hold the elbow in place. Assume: a) Steady, Incompressible, Uniform fluid flow at inlet/ outlet. ρwater= 1000 kg/m3.
A converging elbow turns water through an angle of 135º in a vertical plane. The flow cross-sectional diameter is 400 mm at the elbow inlet, section (1), and 200 mm at the elbow outlet,section (2). The elbow flow passage volume is 0.2 m3between sections (1) and (2). The water volume flowrate is 0.4 m3/s, and the elbow inlet and outlet pressures are 150 kPa(gage) and 90 kPa(gage). The empty elbow mass is 12 kg. Calculate the horizontal and vertical anchoring forces required to hold the elbow in place. Assume: a) Steady, Incompressible, Uniform fluid flow at inlet/ outlet. ρwater= 1000 kg/m3.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A converging elbow turns water through an angle of 135º in a vertical plane. The flow cross-sectional diameter is 400 mm at the elbow inlet, section (1), and 200 mm at the elbow outlet,section (2). The elbow flow passage volume is 0.2 m3between sections (1) and (2). The water volume flowrate is 0.4 m3/s, and the elbow inlet and outlet pressures are 150 kPa(gage) and 90 kPa(gage). The empty elbow mass is 12 kg. Calculate the horizontal and vertical anchoring forces required to hold the elbow in place. Assume: a) Steady, Incompressible, Uniform fluid flow at inlet/ outlet. ρwater= 1000 kg/m3.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY