A connecting rod for an I.C. engine running at 1800 r.p.m. and developing a maximum pressure of 3.15 MPa. The diameter of the piston is 100 mm; mass of the reciprocating parts per cylinder 2.25 kg; length of connecting rod 380 mm; stroke of piston 190 mm and compression ratio 6:1. Take a factor of safety of 6 for the design. Take length to diameter ratio for big end bearing as 1.3 and small end bearing as 2 and the corresponding bearing pressures as 10 MPa and 15 MPa. The density of material of the rod may be taken as 8000 kg/m³ and the allowable stress in the bolts as 60 MPa and in cap as 80 MPa. The rod is to be of I-section for which you can choose your own proportions. Calculate the dimension of I- section of the connecting rod.
A connecting rod for an I.C. engine running at 1800 r.p.m. and developing a maximum pressure of 3.15 MPa. The diameter of the piston is 100 mm; mass of the reciprocating parts per cylinder 2.25 kg; length of connecting rod 380 mm; stroke of piston 190 mm and compression ratio 6:1. Take a factor of safety of 6 for the design. Take length to diameter ratio for big end bearing as 1.3 and small end bearing as 2 and the corresponding bearing pressures as 10 MPa and 15 MPa. The density of material of the rod may be taken as 8000 kg/m³ and the allowable stress in the bolts as 60 MPa and in cap as 80 MPa. The rod is to be of I-section for which you can choose your own proportions. Calculate the dimension of I- section of the connecting rod.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A connecting rod for an I.C. engine running at 1800 r.p.m. and developing a maximum pressure of 3.15 MPa. The diameter of the piston is 100 mm; mass of the reciprocating parts per cylinder 2.25 kg; length of connecting rod 380 mm; stroke of piston 190 mm and compression ratio 6:1. Take a factor of safety of 6 for the design. Take length to diameter ratio for big end bearing as 1.3 and small end bearing as 2 and the corresponding bearing pressures as 10 MPa and 15 MPa. The density of material of the rod may be taken as 8000 kg/m³ and the allowable stress in the bolts as 60 MPa and in cap as 80 MPa. The rod is to be of I-section for which you can choose your own proportions. Calculate the dimension of I- section of the connecting rod.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY