a) Compare the average kinetic energy k,TrT of air molecules to the difference in gravitational energies, AU = mgz, at the top and bottom of a room, of height z = 3 m. Again, you can assume air is made of nitrogen only. Why doesn't the air in the room fall to the floor? What could you do to make it fall? b) This time calculate it for a 50 µm dirt particle of mass 1.25×10-10 kg. Does it fall to the ground and if so, why? %3D
a) Compare the average kinetic energy k,TrT of air molecules to the difference in gravitational energies, AU = mgz, at the top and bottom of a room, of height z = 3 m. Again, you can assume air is made of nitrogen only. Why doesn't the air in the room fall to the floor? What could you do to make it fall? b) This time calculate it for a 50 µm dirt particle of mass 1.25×10-10 kg. Does it fall to the ground and if so, why? %3D
Related questions
Question
please dont copy other answers on bartleby sine they are unreliable/incorrectplease
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps