A company selling widgets has found that the number of items sold, x, depends upon the price, p at 90000 which they're sold, according the equation z (0.6p + 1)? Due to inflation and increasing health benefit costs, the company has been increasing the price by $0.06 per month. Find the rate at which revenue is changing when the company is selling widgets at $8 each. Revenue is decreasing by dollars per month Hint: Give your answer as a positive value.

ENGR.ECONOMIC ANALYSIS
14th Edition
ISBN:9780190931919
Author:NEWNAN
Publisher:NEWNAN
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
icon
Related questions
Question
### Understanding Revenue Change in Widget Sales

A company selling widgets has observed that the number of items sold, \( x \), depends upon the price, \( p \), at which they're sold, following the equation:

\[ x = \frac{90000}{(0.6p + 1)^2} \]

Due to inflation and increasing health benefit costs, the company has been increasing the price by $0.06 per month. Your task is to determine the rate at which revenue is changing when the company is selling widgets at $8 each.

To find this, use the following steps:

1. **Identify Revenue Function:**
    - Revenue, \( R \), is given by \( R = x \times p \).
    - Substitute the given equation for \( x \):
    \[ R = \left(\frac{90000}{(0.6p + 1)^2}\right) \times p \]

2. **Calculate the Rate of Change of Revenue:**
    - Differentiate \( R \) with respect to time (given that \( p \) is changing over time).
    - Given the price increase rate (\( \frac{dp}{dt} \)), find \( \frac{dR}{dt} \) when \( p = 8 \).

3. **Substitute Values and Solve:**
    - Determine \( \frac{dR}{dt} \) knowing \( \frac{dp}{dt} = 0.06 \).

**Problem Statement Revisited:**

Due to inflation and increasing health benefit costs, the company has been increasing the price by $0.06 per month. Find the rate at which revenue is changing when the company is selling widgets at $8 each.

\[ \text{Revenue is decreasing by} \ \fbox{} \ \text{dollars per month} \]

**Hint:**
Give your answer as a positive value.
Transcribed Image Text:### Understanding Revenue Change in Widget Sales A company selling widgets has observed that the number of items sold, \( x \), depends upon the price, \( p \), at which they're sold, following the equation: \[ x = \frac{90000}{(0.6p + 1)^2} \] Due to inflation and increasing health benefit costs, the company has been increasing the price by $0.06 per month. Your task is to determine the rate at which revenue is changing when the company is selling widgets at $8 each. To find this, use the following steps: 1. **Identify Revenue Function:** - Revenue, \( R \), is given by \( R = x \times p \). - Substitute the given equation for \( x \): \[ R = \left(\frac{90000}{(0.6p + 1)^2}\right) \times p \] 2. **Calculate the Rate of Change of Revenue:** - Differentiate \( R \) with respect to time (given that \( p \) is changing over time). - Given the price increase rate (\( \frac{dp}{dt} \)), find \( \frac{dR}{dt} \) when \( p = 8 \). 3. **Substitute Values and Solve:** - Determine \( \frac{dR}{dt} \) knowing \( \frac{dp}{dt} = 0.06 \). **Problem Statement Revisited:** Due to inflation and increasing health benefit costs, the company has been increasing the price by $0.06 per month. Find the rate at which revenue is changing when the company is selling widgets at $8 each. \[ \text{Revenue is decreasing by} \ \fbox{} \ \text{dollars per month} \] **Hint:** Give your answer as a positive value.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 23 images

Blurred answer
Knowledge Booster
Sales
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
ENGR.ECONOMIC ANALYSIS
ENGR.ECONOMIC ANALYSIS
Economics
ISBN:
9780190931919
Author:
NEWNAN
Publisher:
Oxford University Press
Principles of Economics (12th Edition)
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (MindTap Course List)
Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
Managerial Economics & Business Strategy (Mcgraw-…
Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education