A clock is constructed so that it keeps perfect time when its simple pendulum has a period of exactly 1.000 s. The pendulum bob has length L = 0.2486 m and, instead of keeping perfect time, the clock runs slow by 1.504 minutes per day. What is the free-fall acceleration (in m/s2) at the clock's location? (Give your answer to at least 3 decimal places.) What length of pendulum bob (in m) is required for the clock to keep perfect time? (Give your answer to at least 4 decimal places.) m
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
A clock is constructed so that it keeps perfect time when its simple pendulum has a period of exactly 1.000 s. The pendulum bob has length L = 0.2486 m and, instead of keeping perfect time, the clock runs slow by 1.504 minutes per day. What is the free-fall acceleration (in m/s2) at the clock's location? (Give your answer to at least 3 decimal places.)
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images