A chip that is of length L = 5.4 mm on a side and thickness t = 1.7 mm is encased in a ceramic substrate, and its exposed surface is convectively cooled by a dielectric liquid for which h = 150 W/m².K and T = 20°C. Th Chip, q. T., P. Cp The time is i Substrate In the off-mode the chip is in thermal equilibrium with the coolant (T; = T). When the chip is energized, however, its temperature increases until a new steady state is established. For purposes of analysis, the energized chip is characterized by uniform volumetric heating with à = 9 x 106 W/m³. Assuming an infinite contact resistance between the chip and substrate and negligible conduction resistance within the chip, determine the steady-state chip temperature Ty. Following activation of the chip, how long does it take to come within 1°C of this temperature? The chip density and specific heat are p = 2000 kg/m³ and c = 700 J/kg.K, respectively. The steady-state chip temperature T, is i S. °C.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

3

A chip that is of length L = 5.4 mm on a side and thickness t = 1.7 mm is encased in a ceramic substrate, and its exposed surface is
convectively cooled by a dielectric liquid for which h = 150 W/m².K and T = 20°C.
Th
Chip,
q. T. P. Cp
The time is i
Substrate
In the off-mode the chip is in thermal equilibrium with the coolant (T; = T). When the chip is energized, however, its temperature
increases until a new steady state is established. For purposes of analysis, the energized chip is characterized by uniform volumetric
heating with a = 9 x 106 W/m³. Assuming an infinite contact resistance between the chip and substrate and negligible conduction
resistance within the chip, determine the steady-state chip temperature Tƒ. Following activation of the chip, how long does it take to
come within 1°C of this temperature? The chip density and specific heat are p = 2000 kg/m³ and c = 700 J/kg.K, respectively.
The steady-state chip temperature T', is i
S.
Physical Properties Mathematical Functions
°C.
Transcribed Image Text:A chip that is of length L = 5.4 mm on a side and thickness t = 1.7 mm is encased in a ceramic substrate, and its exposed surface is convectively cooled by a dielectric liquid for which h = 150 W/m².K and T = 20°C. Th Chip, q. T. P. Cp The time is i Substrate In the off-mode the chip is in thermal equilibrium with the coolant (T; = T). When the chip is energized, however, its temperature increases until a new steady state is established. For purposes of analysis, the energized chip is characterized by uniform volumetric heating with a = 9 x 106 W/m³. Assuming an infinite contact resistance between the chip and substrate and negligible conduction resistance within the chip, determine the steady-state chip temperature Tƒ. Following activation of the chip, how long does it take to come within 1°C of this temperature? The chip density and specific heat are p = 2000 kg/m³ and c = 700 J/kg.K, respectively. The steady-state chip temperature T', is i S. Physical Properties Mathematical Functions °C.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The