A car is traveling on a straight, level road under wintry conditions. Seeing a patch of ice ahead of her, the driver of the car slams on her brakes and skids on dry pavement for 70 m, decelerating at 6.0 m/s2. Then she hits the icy patch and skids again. The car takes a duration of 85.0 s to come to rest during the second skid. If her initial speed was 50 m/s, what was the magnitude of the deceleration on the ice during the second skid. 1. Which of the following kinematic equations would you use to determine the velocity of the car after skidding on the dry pavement for 70 m? 2. Determine the velocity of the car after skidding on the dry pavement for 70 m. 3. Which of the following kinematic equations would you use to determine the deceleration of the car after skidding to a stop on the icy patch? 4. Determine the magnitude of the deceleration of the car after skidding to a stop on the icy patch
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A car is traveling on a straight, level road under wintry conditions. Seeing a patch of ice ahead of her, the driver of the car slams on her brakes and skids on dry pavement for 70 m, decelerating at 6.0 m/s2. Then she hits the icy patch and skids again. The car takes a duration of 85.0 s to come to rest during the second skid. If her initial speed was 50 m/s, what was the magnitude of the deceleration on the ice during the second skid.
1. Which of the following
2. Determine the velocity of the car after skidding on the dry pavement for 70 m.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images