A car is traveling on a straight, level road under wintry conditions. Seeing a patch of ice ahead of her, the driver of the car slams on her brakes and skids on dry pavement for 70 m, decelerating at 6.0 m/s2. Then she hits the icy patch and skids again. The car takes a duration of 85.0 s to come to rest during the second skid. If her initial speed was 50 m/s, what was the magnitude of the deceleration on the ice during the second skid.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A car is traveling on a straight, level road under wintry conditions. Seeing a patch of ice ahead of her, the driver of the car slams on her brakes and skids on dry pavement for 70 m, decelerating at 6.0 m/s2. Then she hits the icy patch and skids again. The car takes a duration of 85.0 s to come to rest during the second skid. If her initial speed was 50 m/s, what was the magnitude of the deceleration on the ice during the second skid.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images