A car drives from city A to city B and then back to city C at a constant speed of 74.0 km/h. If the entire trip takes 2.10 h, and the distance between city A and city C is 63.0 km, what is the distance between city A and city B? (The diagram is not drawn to scale). A B O 109 km O The correct answer is not listed. O 248 km O 46.2 km 126 km
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Question 6, Physics - equation sheet attached
![Physics 114 Equation Sheet
Constants and Conversions
Kinematics Continued
g = 9.80 m/s
Free-fall acceleration
Δν
Instantaneous
ainst. = lim
At-o At
Acceleration
1N = 1 kg m/s?
Newton
Uniform motion
(v) = (v); = constant
Position in uniform
X = x + (v)At
Mathematics, Scaling and Vectors
b = a* + loga (b) = x
motion
Logarithm
Constant
(v); = (v,); + azAt
acceleration:
1
log(ab) = log(a) + log (b)
x, = x, + (v,),At +a, (at)?
log Ax" = n log x + log A
(v,); = (v,)} + 2a,Ax
Volume of a sphere
V =
Surface area of a
A = 4ar?
Forces
sphere
Newton's second law
Fnet = EF = mã
%3D
Volume of a cylinder
V = arl
Newton's second law
Fnetx = EF = ma,
%3D
Surface area of a
A = 2ar? + 2rl
Component form
Fnety = ER, = may
cylinder
Mass density
p = m/V
Newton's Third Law
FA en =-
ton A
A, = A cos e (rel. to x-axis)
Weight
w = mg
x -component of a
vector Å
Apparent weight
Wapp = magnitude of supporting forces
y -component of a
Ay = A sin 8 (rel to x-axis)
vector Å
Kinetic friction
fk = Han
Magnitude of vector Ả
Static friction
A = JA + A,
Reynolds number
Re = pvl/n
Direction of A relative
8 = tan-(Ay/A,)
1
Drag (high Reynolds
number)
=CopAv?
to x-axis
Addition of two vectors If = Å + B, then
C, = A, + B,
D = 6nyrv
Drag (low Reynolds
number)
Cy = Ay + By
Circular Motion
Kinematics
Centripetal acceleration
a =
Displacement
Ax = x - X
Average Velocity
Ax
Frequency
1
Varg
T
2ar
At
Ax
Vinst. = lim
Instantaneous Velocity
At+0 At
Av
Average Acceleration
davg
Δε](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fea74ad9f-1200-44ca-9ede-5ca983ad5349%2Ffa08efb5-8767-400b-9610-06217bbe7660%2F7alij59_processed.jpeg&w=3840&q=75)
![A car drives from city A to city B and then back to city C at a constant speed of
74.0 km/h. If the entire trip takes 2.10 h, and the distance between city A and city C is
63.0 km, what is the distance between city A and city B? (The diagram is not drawn to
scale).
A
B
O 109 km
O The correct answer is not listed.
O 248 km
O 46.2 km
O 126 km](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fea74ad9f-1200-44ca-9ede-5ca983ad5349%2Ffa08efb5-8767-400b-9610-06217bbe7660%2F8q3hyu8_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)