A capacitor stores a separation of charge. To separate the charges on a capacitor, you have to move charges against where the E field wants to push them (the oppositely charges on the two plates are attracted and want to move together), so charging takes work. That work becomes stored energy -- just like carrying water up a hill so that you can let it roll down at a later time and turn a generator. The total amount of energy stored in a capacitor is ½|Q||ΔV|. We'll use this to determine the amount of energy stored in a cell membrane.In discussion, we found that a cell membrane maintains a potential difference of about 70 mV (0.07 V) between the inside and outside of the membrane. We also found that a 1 μm by 1 μm section of the membrane has a capacitance of about 1.75  10-15 F.1. What is the magnitude of charge on one side of the 1 μm by 1 μm section of the membrane?____ C2. What is the energy stored in the 1 μm by 1 μm section of the membrane?____ J3. For a cell with a radius of 10 μm, what is the total amount of charge on one side of the membrane? ___ C4. What is the total energy stored in the full cell membrane? ___ J

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

A capacitor stores a separation of charge. To separate the charges on a capacitor, you have to move charges against where the E field wants to push them (the oppositely charges on the two plates are attracted and want to move together), so charging takes work. That work becomes stored energy -- just like carrying water up a hill so that you can let it roll down at a later time and turn a generator. The total amount of energy stored in a capacitor is ½|Q||ΔV|. We'll use this to determine the amount of energy stored in a cell membrane.

In discussion, we found that a cell membrane maintains a potential difference of about 70 mV (0.07 V) between the inside and outside of the membrane. We also found that a 1 μm by 1 μm section of the membrane has a capacitance of about 1.75  10-15 F.

1. What is the magnitude of charge on one side of the 1 μm by 1 μm section of the membrane?
____ C

2. What is the energy stored in the 1 μm by 1 μm section of the membrane?

____ J

3. For a cell with a radius of 10 μm, what is the total amount of charge on one side of the membrane?

 ___ C

4. What is the total energy stored in the full cell membrane?

 ___ J

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 9 steps with 8 images

Blurred answer
Knowledge Booster
Parallel-plate capacitor
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON