A canister with a piston contains 1.05 kg of air at 30.0°C and 1.25 x 105 Pa. Energy is transferred by heat into the system as it expands and the pressure rises to 4.25 x 10 Pa. Throughout the expansion, the relationship between pressure and volume is given by P = c1/2) where Cis a constant. Air may be modeled as a diatomic ideal gas with a molar mass of M = 28.9 g/mol. Determine the following. (a) initial volume (in m3) 0.01477 The ideal gas law may be used to describe the air in any state. Since we want the initial volume, we should use the pressure and temperature for the initial state. How can you determine the number of moles of air from the total mass and the molar mass? m (b) final volume (in m3) m3 (c) final temperature (in K)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
A canister with a piston contains 1.05 kg of air at 30.0°C and 1.25 x 105 Pa. Energy is transferred by heat into the system as it expands and the pressure rises to 4.25 x 105 Pa.
Throughout the expansion, the relationship between pressure and volume is given by P = cv1/2) where C is a constant. Air may be modeled as a diatomic ideal gas with a molar mass of
M = 28.9 g/mol. Determine the following.
(a) initial volume (in m3)
0.01477
The ideal gas law may be used to describe the air in any state, Since we want the initial volume, we should use the pressure and temperature for the initial state. How can you
determine the number of moles of air from the total mass and the molar mass? m3
(b) final volume (in m)
m3
(c) final temperature (in K)
K
(d) work done on the air (in J)
(e) energy transferred by heat (Enter the magnitude in MJ.)
MJ
Transcribed Image Text:A canister with a piston contains 1.05 kg of air at 30.0°C and 1.25 x 105 Pa. Energy is transferred by heat into the system as it expands and the pressure rises to 4.25 x 105 Pa. Throughout the expansion, the relationship between pressure and volume is given by P = cv1/2) where C is a constant. Air may be modeled as a diatomic ideal gas with a molar mass of M = 28.9 g/mol. Determine the following. (a) initial volume (in m3) 0.01477 The ideal gas law may be used to describe the air in any state, Since we want the initial volume, we should use the pressure and temperature for the initial state. How can you determine the number of moles of air from the total mass and the molar mass? m3 (b) final volume (in m) m3 (c) final temperature (in K) K (d) work done on the air (in J) (e) energy transferred by heat (Enter the magnitude in MJ.) MJ
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Thermodynamic Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON