A box of mass 3.0 kg slides down a rough vertical wall. The gravitational force on the box is 29.4 N. When the box reaches a speed of 2.5 m/s, you start pushing on one edge of the box at a 45° angle (use degrees in your calculations throughout this problem) with a constant force of magnitude F, = 23.0 N, as shown in (Eigure 1). There is now a frictional force between the box and the wall of magnitude 13.0 N. How fast is the box sliding 3.0 s after you started pushing on it? I Review | Constants Still using our simplified model (in which we do not know the magnitudes of the forces), draw a free-body diagram showing all the forces acting on the box after you start pushing on it. The positive y axis is taken to be upward. The black dot represents the box. Since our model is about having constant forces of unknown magnitude, you do not need to draw the vectors to scale, but your final diagram should be physically reasonable. Draw the vectors starting at the black dot. The location and orientation of the vectors will be graded. The relative lengths of the vectors will not be graded. Figure < 1 of 1 Vectors: i Normal force ed Fc Gravitational force f Friction force F, Pushing force
A box of mass 3.0 kg slides down a rough vertical wall. The gravitational force on the box is 29.4 N. When the box reaches a speed of 2.5 m/s, you start pushing on one edge of the box at a 45° angle (use degrees in your calculations throughout this problem) with a constant force of magnitude F, = 23.0 N, as shown in (Eigure 1). There is now a frictional force between the box and the wall of magnitude 13.0 N. How fast is the box sliding 3.0 s after you started pushing on it? I Review | Constants Still using our simplified model (in which we do not know the magnitudes of the forces), draw a free-body diagram showing all the forces acting on the box after you start pushing on it. The positive y axis is taken to be upward. The black dot represents the box. Since our model is about having constant forces of unknown magnitude, you do not need to draw the vectors to scale, but your final diagram should be physically reasonable. Draw the vectors starting at the black dot. The location and orientation of the vectors will be graded. The relative lengths of the vectors will not be graded. Figure < 1 of 1 Vectors: i Normal force ed Fc Gravitational force f Friction force F, Pushing force
University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter2: Vectors
Section: Chapter Questions
Problem 2.9CYU: Check Your Understanding Suppose that Balto in Example 2.10 leaves the game to attend to more...
Related questions
Question
100%
help please
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning