A block with mass m = 5.00 kg slides down a surface inclined 36.9° to the horizontal (Figure 1). The coefficient of kinetic friction is 0.27. A string attached to the block is wrapped around a flywheel on a fixed axis at O. The flywheel has mass 11.1 kg and moment of inertia 0.500 kg - m² with respect to the axis of rotation. The string pulls without slipping at a perpendicular distance of 0.300 m from that axis. Part A What is the acceleration of the block down the plane? Express your answer in meters per second squared. a = 1.45 m/s² igure < 1 of 1 Part B What is the tension in the string? Express your answer in newtons. 5.00 kg ΑΣφ T = 11.6 N 36.9°
Rigid Body
A rigid body is an object which does not change its shape or undergo any significant deformation due to an external force or movement. Mathematically speaking, the distance between any two points inside the body doesn't change in any situation.
Rigid Body Dynamics
Rigid bodies are defined as inelastic shapes with negligible deformation, giving them an unchanging center of mass. It is also generally assumed that the mass of a rigid body is uniformly distributed. This property of rigid bodies comes in handy when we deal with concepts like momentum, angular momentum, force and torque. The study of these properties – viz., force, torque, momentum, and angular momentum – of a rigid body, is collectively known as rigid body dynamics (RBD).
Trending now
This is a popular solution!
Step by step
Solved in 5 steps