A block of mass, 1.2 kg is attached and secured to an end of a spring with a spring constant of 10,000 N/cm. The other end of the spring is secured to the wall. The block is pushed against the spring, which compresses the spring to a position of x = -0.04 cm. When uncompressed, the end of the spring that is attached to the block is at a position of x = 0.00 cm. The block/spring system is then released from rest, and the block travels along a rough horizontal track for the length of the spring. At 0.00 cm the surface changes. If possible, can you help me calculate the frictional force exerted on the block from -0.04 cm to 0.00 cm? Thank you
A block of mass, 1.2 kg is attached and secured to an end of a spring with a spring constant of 10,000 N/cm. The other end of the spring is secured to the wall. The block is pushed against the spring, which compresses the spring to a position of x = -0.04 cm. When uncompressed, the end of the spring that is attached to the block is at a position of x = 0.00 cm. The block/spring system is then released from rest, and the block travels along a rough horizontal track for the length of the spring. At 0.00 cm the surface changes. If possible, can you help me calculate the frictional force exerted on the block from -0.04 cm to 0.00 cm? Thank you
Related questions
Question
100%
A block of mass, 1.2 kg is attached and secured to an end of a spring with a spring constant of 10,000 N/cm. The other end of the spring is secured to the wall. The block is pushed against the spring, which compresses the spring to a position of x = -0.04 cm. When uncompressed, the end of the spring that is attached to the block is at a position of x = 0.00 cm. The block/spring system is then released from rest, and the block travels along a rough horizontal track for the length of the spring. At 0.00 cm the surface changes. If possible, can you help me calculate the frictional force exerted on the block from -0.04 cm to 0.00 cm? Thank you.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images