A biologist looked at the relationship between number of seeds a plant produces and the percent of those seeds that sprout. The results of the survey are shown below. Seeds Produced 68 56 61 48 Sprout Percent 60.6 69.2 64.7 64.6 63 63 62 40 64.1 65.1 68.4 84 a. Find the correlation coefficient: r= b. The null and alternative hypotheses for correlation are: H₂: ? ✓ H₁:20 The p-value is: Round to 2 decimal places. (Round to four decimal places) c. Use a level of significance of a = 0.05 to state the conclusion of the hypothesis test in the context of the study. O There is statistically significant evidence to conclude that there is a correlation between the number of seeds that a plant produces and the percent of the seeds that sprout. Thus, the regression line is useful. O There is statistically insignificant evidence to conclude that a plant that produces more seeds will have seeds with a lower sprout rate than a plant that produces fewer seeds. There is statistically significant evidence to conclude that a plant that produces more seeds will have seeds with a lower sprout rate than a plant that produces fewer seeds. O There is statistically insignificant evidence to conclude that there is a correlation between the number of seeds that a plant produces and the percent of the seeds that sprout. Thus, the use of the regression line is not appropriate. (Round to two decimal places) d. ² e. Interpret ²: There is a 65% chance that the regression line will be a good predictor for the percent of seeds that sprout based on the number of seeds produced. O 65% of all plants produce seeds whose chance of sprouting is the average chance of sprouting. O Given any group of plants that all produce the same number of seeds, 65% of all of these plants will produce seeds with the same chance of sprouting. f. The equation of the linear regression line is: O There is a large variation in the percent of seeds that sprout, but if you only look at plants that produce a fixed number of seeds, this variation on average is reduced by 65%. (Please show your answers to two decimal places) g. Use the model to predict the percent of seeds that sprout if the plant produces 55 seeds. Percent sprouting = (Please round your answer to the nearest whole number.) h. Interpret the slope of the regression line in the context of the question: For every additional seed that a plant produces, the chance for each of the seeds to sprout tends to decrease by 0.62 percent. The slope has no practical meaning since it makes no sense to look at the percent of the seeds that sprout since you cannot have a negative number. As x goes up, y goes down. i. Interpret the y-intercept in the context of the question: O The average sprouting percent is predicted to be 103.39. O If plant produces no seeds, then that plant's sprout rate will be 103.39. O The y-intercept has no practical meaning for this study. O The best prediction for a plant that has 0 seeds is 103.39 percent.

Glencoe Algebra 1, Student Edition, 9780079039897, 0079039898, 2018
18th Edition
ISBN:9780079039897
Author:Carter
Publisher:Carter
Chapter4: Equations Of Linear Functions
Section4.5: Correlation And Causation
Problem 23PFA
icon
Related questions
Question
A biologist looked at the relationship between number of seeds a plant produces and the percent of those
seeds that sprout. The results of the survey are shown below.
Seeds Produced 68 56 61
Sprout Percent 60.6 69.2
= 0
48
64.7 64.6
#0
a. Find the correlation coefficient:
b. The null and alternative hypotheses for correlation are:
H₂: ?
H₁: 2
The p-value is:
63
64.1
40
Round to 2 decimal places.
63 62
65.1 68.4 84
(Round to four decimal places)
c. Use a level of significance of a = 0.05 to state the conclusion of the hypothesis test in the context
of the study.
O There is statistically significant evidence to conclude that there is a correlation between the
number of seeds that a plant produces and the percent of the seeds that sprout. Thus, the
regression line is useful.
O There is statistically insignificant evidence to conclude that a plant that produces more seeds
will have seeds with a lower sprout rate than a plant that produces fewer seeds.
O There is statistically significant evidence to conclude that a plant that produces more seeds
will have seeds with a lower sprout rate than a plant that produces fewer seeds.
O There is statistically insignificant evidence to conclude that there is a correlation between the
number of seeds that a plant produces and the percent of the seeds that sprout. Thus, the use
of the regression line is not appropriate.
(Round to two decimal places)
f. The equation of the linear regression line is:
d. ²=
e. Interpret ²:
O There is a 65% chance that the regression line will be a good predictor for the percent of seeds
that sprout based on the number of seeds produced.
O 65% of all plants produce seeds whose chance of sprouting is the average chance of sprouting.
O Given any group of plants that all produce the same number of seeds, 65% of all of these
plants will produce seeds with the same chance of sprouting.
O There is a large variation in the percent of seeds that sprout, but if you only look at plants
that produce a fixed number of seeds, this variation on average is reduced by 65%.
(Please show your answers to two decimal places)
g. Use the model to predict the percent of seeds that sprout if the plant produces 55 seeds.
Percent sprouting =
(Please round your answer to the nearest whole number.)
h. Interpret the slope of the regression line in the context of the question:
O For every additional seed that a plant produces, the chance for each of the seeds to sprout
tends to decrease by 0.62 percent.
i. Interpret the y-intercept in the context of the question:
O The slope has no practical meaning since it makes no sense to look at the percent of the seeds
that sprout since you cannot have a negative number.
O As x goes up, y goes down.
O The average sprouting percent is predicted to be 103.39.
O If plant produces no seeds, then that plant's sprout rate will be 103.39.
O The y-intercept has no practical meaning for this study.
O The best prediction for a plant that has 0 seeds is 103.39 percent.
Transcribed Image Text:A biologist looked at the relationship between number of seeds a plant produces and the percent of those seeds that sprout. The results of the survey are shown below. Seeds Produced 68 56 61 Sprout Percent 60.6 69.2 = 0 48 64.7 64.6 #0 a. Find the correlation coefficient: b. The null and alternative hypotheses for correlation are: H₂: ? H₁: 2 The p-value is: 63 64.1 40 Round to 2 decimal places. 63 62 65.1 68.4 84 (Round to four decimal places) c. Use a level of significance of a = 0.05 to state the conclusion of the hypothesis test in the context of the study. O There is statistically significant evidence to conclude that there is a correlation between the number of seeds that a plant produces and the percent of the seeds that sprout. Thus, the regression line is useful. O There is statistically insignificant evidence to conclude that a plant that produces more seeds will have seeds with a lower sprout rate than a plant that produces fewer seeds. O There is statistically significant evidence to conclude that a plant that produces more seeds will have seeds with a lower sprout rate than a plant that produces fewer seeds. O There is statistically insignificant evidence to conclude that there is a correlation between the number of seeds that a plant produces and the percent of the seeds that sprout. Thus, the use of the regression line is not appropriate. (Round to two decimal places) f. The equation of the linear regression line is: d. ²= e. Interpret ²: O There is a 65% chance that the regression line will be a good predictor for the percent of seeds that sprout based on the number of seeds produced. O 65% of all plants produce seeds whose chance of sprouting is the average chance of sprouting. O Given any group of plants that all produce the same number of seeds, 65% of all of these plants will produce seeds with the same chance of sprouting. O There is a large variation in the percent of seeds that sprout, but if you only look at plants that produce a fixed number of seeds, this variation on average is reduced by 65%. (Please show your answers to two decimal places) g. Use the model to predict the percent of seeds that sprout if the plant produces 55 seeds. Percent sprouting = (Please round your answer to the nearest whole number.) h. Interpret the slope of the regression line in the context of the question: O For every additional seed that a plant produces, the chance for each of the seeds to sprout tends to decrease by 0.62 percent. i. Interpret the y-intercept in the context of the question: O The slope has no practical meaning since it makes no sense to look at the percent of the seeds that sprout since you cannot have a negative number. O As x goes up, y goes down. O The average sprouting percent is predicted to be 103.39. O If plant produces no seeds, then that plant's sprout rate will be 103.39. O The y-intercept has no practical meaning for this study. O The best prediction for a plant that has 0 seeds is 103.39 percent.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 21 images

Blurred answer
Recommended textbooks for you
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt
Holt Mcdougal Larson Pre-algebra: Student Edition…
Holt Mcdougal Larson Pre-algebra: Student Edition…
Algebra
ISBN:
9780547587776
Author:
HOLT MCDOUGAL
Publisher:
HOLT MCDOUGAL