A binary tree is \emph{full} if every non-leaf node has exactly two children. For context, recall that we saw in lecture that a binary tree of height $h$ can have at most $2^{h+1}-1$ nodes and at most $2^h$ leaves, and that it achieves these maxima when it is \emph{complete}, meaning that it is full and all leaves are at the same distance from the root. Find $\nu(h)$, the \emph{minimum} number of leaves that a full binary tree of height $h$ can have, and prove your answer using ordinary induction on $h$. Note that tree of height of 0 is a single (leaf) node. \textit{Hint 1: try a few simple cases ($h = 0, 1, 2, 3, \dots$) and see if you can guess what $\nu(h)$ is.}
A binary tree is \emph{full} if every non-leaf node has exactly two children. For context, recall that we saw in lecture that a binary tree of height $h$ can have at most $2^{h+1}-1$ nodes and at most $2^h$ leaves, and that it achieves these maxima when it is \emph{complete}, meaning that it is full and all leaves are at the same distance from the root. Find $\nu(h)$, the \emph{minimum} number of leaves that a full binary tree of height $h$ can have, and prove your answer using ordinary induction on $h$. Note that tree of height of 0 is a single (leaf) node.
\textit{Hint 1: try a few simple cases ($h = 0, 1, 2, 3, \dots$) and see if you can guess what $\nu(h)$ is.}

Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images









