A bicycle wheel is mounted on a fixed, frictionless axle. A massless string is wound around the wheel's rim, and a constant horizontal force F of magnitude F starts pulling the string from the top of the wheel starting at time t=0 when the wheel is not rotating. Suppose that at some later time t the string has been pulled through a distance d. The wheel has moment of inertia I=kmr2, where k is a dimensionless number less than 1, m is the wheel's mass, and r is its radius. Assume that the string does not slip on the wheel. The force F  pulling the string is constant; therefore the magnitude of the angular acceleration α of the wheel is constant for this configuration. Find the magnitude of the angular velocity ω of the wheel when the string has been pulled a distance d. Express the angular velocity ω of the wheel in terms of the displacement d, the magnitude F of the applied force, and the moment of inertia of the wheel Iw.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
100%

A bicycle wheel is mounted on a fixed, frictionless axle. A massless string is wound around the wheel's rim, and a constant horizontal force F of magnitude F starts pulling the string from the top of the wheel starting at time t=0 when the wheel is not rotating. Suppose that at some later time t the string has been pulled through a distance d. The wheel has moment of inertia I=kmr2, where k is a dimensionless number less than 1, m is the wheel's mass, and r is its radius. Assume that the string does not slip on the wheel.

The force F  pulling the string is constant; therefore the magnitude of the angular acceleration α of the wheel is constant for this configuration.

Find the magnitude of the angular velocity ω of the wheel when the string has been pulled a distance d.

Express the angular velocity ω of the wheel in terms of the displacement d, the magnitude F of the applied force, and the moment of inertia of the wheel Iw.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON