A beam is supported by a hinged joint at one end (0) and by a spring at the other end (A) as shown in the figure. The stiffness of the spring is such that the beam end A lies directly under the spring attachment point B when the spring is at its free length (no force). Using Hamilton's principle, develop the Euler-Lagrange equation of motion for the system when subjected to 1. A time-dependent vertical force applied at end A of the beam. 2. A time dependent force at end A of the beam that remains oriented perpendicular to the beam for all angles of the beam. Assume the following for your analysis 1. The beam is rigid. 2. The beam is uniform, i.e. its mass per unit length is constant) 3. The thickness of the beam is small compared to its length 4. The spring stiffness is constant. 5. The spring mass is small and can be ignored. 6. The angular displacements of the beam are not necessarily small.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

urgent please

A beam is supported by a hinged joint at one end (0) and by a spring at the other end (A) as
shown in the figure. The stiffness of the spring is such that the beam end A lies directly under the
spring attachment point B when the spring is at its free length (no force). Using Hamilton's
principle, develop the Euler-Lagrange equation of motion for the system when subjected to
1. A time-dependent vertical force applied at end A of the beam.
2. A time dependent force at end A of the beam that remains oriented perpendicular to the beam for
all angles of the beam.
Assume the following for your analysis
1. The beam is rigid.
2. The beam is uniform, i.e. its mass per unit length is constant)
3. The thickness of the beam is small compared to its length
4. The spring stiffness is constant.
5. The spring mass is small and can be ignored.
6. The angular displacements of the beam are not necessarily small.
F(t)
F(t)
Transcribed Image Text:A beam is supported by a hinged joint at one end (0) and by a spring at the other end (A) as shown in the figure. The stiffness of the spring is such that the beam end A lies directly under the spring attachment point B when the spring is at its free length (no force). Using Hamilton's principle, develop the Euler-Lagrange equation of motion for the system when subjected to 1. A time-dependent vertical force applied at end A of the beam. 2. A time dependent force at end A of the beam that remains oriented perpendicular to the beam for all angles of the beam. Assume the following for your analysis 1. The beam is rigid. 2. The beam is uniform, i.e. its mass per unit length is constant) 3. The thickness of the beam is small compared to its length 4. The spring stiffness is constant. 5. The spring mass is small and can be ignored. 6. The angular displacements of the beam are not necessarily small. F(t) F(t)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Application of Lagrange's Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON