A basis for the null space of the Matrix 1 2 3 A 2 4 6 is - 1 a. O b. O C. 00 { { { - 3 0 |} 1 2 0 1 2 0 3 0} 1 3 6} 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Finding a Basis for the Null Space of a Matrix**

Given the matrix \( A \):

\[
A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 0 & 0 & 1 \end{pmatrix}
\]

We are tasked with identifying a basis for the null space of this matrix.

**Choices:**

- **Option a:**

\[
\begin{Bmatrix}
\begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}
\end{Bmatrix}
\]

- **Option b:**

\[
\begin{Bmatrix}
\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix},
\begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}
\end{Bmatrix}
\]

- **Option c:**

\[
\begin{Bmatrix}
\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},
\begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix}
\end{Bmatrix}
\]

**Detailed Explanation:**

The task is to determine which of these options forms a basis for the null space of matrix \( A \). The null space of a matrix consists of all vectors \( \mathbf{x} \) such that \( A\mathbf{x} = \mathbf{0} \). Finding the basis involves identifying independent vectors that span this subspace of solutions.
Transcribed Image Text:**Finding a Basis for the Null Space of a Matrix** Given the matrix \( A \): \[ A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 0 & 0 & 1 \end{pmatrix} \] We are tasked with identifying a basis for the null space of this matrix. **Choices:** - **Option a:** \[ \begin{Bmatrix} \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \end{Bmatrix} \] - **Option b:** \[ \begin{Bmatrix} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \end{Bmatrix} \] - **Option c:** \[ \begin{Bmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix} \end{Bmatrix} \] **Detailed Explanation:** The task is to determine which of these options forms a basis for the null space of matrix \( A \). The null space of a matrix consists of all vectors \( \mathbf{x} \) such that \( A\mathbf{x} = \mathbf{0} \). Finding the basis involves identifying independent vectors that span this subspace of solutions.
**A Basis for the Null Space of the Matrix**

Consider the matrix:

\[ A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 0 & 0 & 1 \end{pmatrix} \]

Choose the correct basis for the null space of this matrix:

- **Option a:**
  \[
  \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}
  \]

- **Option b:**
  \[
  \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix},
  \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}
  \]

- **Option c:**
  \[
  \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},
  \begin{pmatrix} 6 \\ 0 \\ 1 \end{pmatrix}
  \]

Each option presents a set of vectors. Select the option that represents a set of linearly independent vectors that form a basis for the null space of the given matrix.
Transcribed Image Text:**A Basis for the Null Space of the Matrix** Consider the matrix: \[ A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 0 & 0 & 1 \end{pmatrix} \] Choose the correct basis for the null space of this matrix: - **Option a:** \[ \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \] - **Option b:** \[ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \] - **Option c:** \[ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 6 \\ 0 \\ 1 \end{pmatrix} \] Each option presents a set of vectors. Select the option that represents a set of linearly independent vectors that form a basis for the null space of the given matrix.
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,