Is the vector [1/2] 1 in the null space of matrix A 8 10 L22 7 3 -1 13 -6? 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Is the vector \( \begin{bmatrix} \frac{1}{2} \\ -1 \\ 1 \end{bmatrix} \) in the null space of matrix \( A = \begin{bmatrix} 8 & 7 & 3 \\ 10 & -1 & -6 \\ 22 & 13 & 2 \end{bmatrix} \)?

**Explanation:**

To determine if the vector \( \begin{bmatrix} \frac{1}{2} \\ -1 \\ 1 \end{bmatrix} \) is in the null space of matrix \( A \), we must check if the following matrix-vector multiplication results in the zero vector:

\[ A \cdot \begin{bmatrix} \frac{1}{2} \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

If this condition holds true, the vector is in the null space of matrix \( A \).
Transcribed Image Text:**Problem Statement:** Is the vector \( \begin{bmatrix} \frac{1}{2} \\ -1 \\ 1 \end{bmatrix} \) in the null space of matrix \( A = \begin{bmatrix} 8 & 7 & 3 \\ 10 & -1 & -6 \\ 22 & 13 & 2 \end{bmatrix} \)? **Explanation:** To determine if the vector \( \begin{bmatrix} \frac{1}{2} \\ -1 \\ 1 \end{bmatrix} \) is in the null space of matrix \( A \), we must check if the following matrix-vector multiplication results in the zero vector: \[ A \cdot \begin{bmatrix} \frac{1}{2} \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] If this condition holds true, the vector is in the null space of matrix \( A \).
Expert Solution
Step 1: Explanation

Let us check whether the given vector is in the null space of given matrix A.

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,