A baseball (radius = .0366 m, mass = .145 kg) is dropped from rest at the top of the Empire State Building (height = 1250 ft). Calculate (a) the initial potential energy of the baseball, (b) its final kinetic energy, and (c) the total energy dissipated by the falling baseball by com- puting the line integral of the force of air resistance along the baseball's total distance of fall. Compare this last result to the difference between the baseball's initial potential energy and its final kinetic energy. (Hint: In part (c) make approximations when evaluating the hyperbolic functions obtained in carrying out the line tntegral.) 2.9

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A baseball (radius = .0366 m, mass = .145 kg) is dropped from rest at the top of the Empire
State Building (height = 1250 ft). Calculate (a) the initial potential energy of the baseball,
(b) its final kinetic energy, and (c) the total energy dissipated by the falling baseball by com-
puting the line integral of the force of air resistance along the baseball's total distance of
fall. Compare this last result to the difference between the baseball's initial potential energy
and its final kinetic energy. (Hint: In part (c) make approximations when evaluating the
hyperbolic functions obtained in carrying out the line integral.)
2.9
Transcribed Image Text:A baseball (radius = .0366 m, mass = .145 kg) is dropped from rest at the top of the Empire State Building (height = 1250 ft). Calculate (a) the initial potential energy of the baseball, (b) its final kinetic energy, and (c) the total energy dissipated by the falling baseball by com- puting the line integral of the force of air resistance along the baseball's total distance of fall. Compare this last result to the difference between the baseball's initial potential energy and its final kinetic energy. (Hint: In part (c) make approximations when evaluating the hyperbolic functions obtained in carrying out the line integral.) 2.9
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Forms of Energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY