A 8 mm thick leather open belt connects two flat pulleys. The smaller pulley is 300 mm diameter and runs at 200 r.p.m. The angle of lap of this pulley is 160° and the coefficient of friction between the belt and the pulley is 0.25. The belt is on the point of slipping when 3 kW is transmitted. The safe working stress in the belt material is 1.6 N/mm?. Determine the required width of the belt for 20% overload capacity. The initial tension may be taken equal to the mean of the driving tensions. It is proposed to increase the power transmitting capacity of the drive by adopting one of the following alternatives: 1) by increasing initial tension by 10%, and 2) by increasing the coefficient of friction to 0.3 by applying a dressing to the belt. Examine the two alternatives and recommend the one which will be more effective. How much power would the drive transmit adopting either of the two alternatives.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
icon
Concept explainers
Question
A 8 mm thick leather open belt connects two flat pulleys. The smaller pulley is 300 mm
diameter and runs at 200 r.p.m. The angle of lap of this pulley is 160° and the coefficient of
friction between the belt and the pulley is 0.25. The belt is on the point of slipping when 3 kW
is transmitted. The safe working stress in the belt material is 1.6 N/mm². Determine the
required width of the belt for 20% overload capacity. The initial tension may be taken equal
to the mean of the driving tensions. It is proposed to increase the power transmitting capacity
of the drive by adopting one of the following alternatives:
1) by increasing initial tension by 10%, and
2) by increasing the coefficient of friction to 0.3 by applying a dressing to the belt.
Examine the two alternatives and recommend the one which will be more effective. How
much power would the drive transmit adopting either of the two alternatives.
Transcribed Image Text:A 8 mm thick leather open belt connects two flat pulleys. The smaller pulley is 300 mm diameter and runs at 200 r.p.m. The angle of lap of this pulley is 160° and the coefficient of friction between the belt and the pulley is 0.25. The belt is on the point of slipping when 3 kW is transmitted. The safe working stress in the belt material is 1.6 N/mm². Determine the required width of the belt for 20% overload capacity. The initial tension may be taken equal to the mean of the driving tensions. It is proposed to increase the power transmitting capacity of the drive by adopting one of the following alternatives: 1) by increasing initial tension by 10%, and 2) by increasing the coefficient of friction to 0.3 by applying a dressing to the belt. Examine the two alternatives and recommend the one which will be more effective. How much power would the drive transmit adopting either of the two alternatives.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Combined Loading
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY