A 65.5-kg person throws a 0.0495-kg snowball forward with a ground speed of 34.0 m/s. A second person, with a mass of 59.5 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.45 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. (Take the direction the snowball is thrown to be the positive direction. Indicate the direction with the sign of your answer.) thrower catcher m/s (Give your answer to at least three decimal places.) m/s
A 65.5-kg person throws a 0.0495-kg snowball forward with a ground speed of 34.0 m/s. A second person, with a mass of 59.5 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.45 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. (Take the direction the snowball is thrown to be the positive direction. Indicate the direction with the sign of your answer.) thrower catcher m/s (Give your answer to at least three decimal places.) m/s
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Topic Video
Question
![### Problem Description
A 65.5-kg person throws a 0.0495-kg snowball forward with a ground speed of 34.0 m/s. A second person, with a mass of 59.5 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.45 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. (Take the direction the snowball is thrown to be the positive direction. Indicate the direction with the sign of your answer.)
**Required Velocities:**
- **Thrower:** ____ m/s (Give your answer to at least three decimal places.)
- **Catcher:** ____ m/s
### Instructions
Calculate the velocities applying conservation of momentum principles, considering the system of the thrower, catcher, and snowball.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2d158991-3671-4459-aef6-bd0615668acc%2F542f1c08-ac35-421d-b396-8c1a20b6b504%2Fpjntxen_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem Description
A 65.5-kg person throws a 0.0495-kg snowball forward with a ground speed of 34.0 m/s. A second person, with a mass of 59.5 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 2.45 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. (Take the direction the snowball is thrown to be the positive direction. Indicate the direction with the sign of your answer.)
**Required Velocities:**
- **Thrower:** ____ m/s (Give your answer to at least three decimal places.)
- **Catcher:** ____ m/s
### Instructions
Calculate the velocities applying conservation of momentum principles, considering the system of the thrower, catcher, and snowball.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON