A 47 g tennis ball is served at 45 m/s. If the ball started from rest, what impulse was applied to the ball by the racket? 8.5 N*s 4.3 N*s 3.2 N*s 2.1 N*s O 2.6 N*s
A 47 g tennis ball is served at 45 m/s. If the ball started from rest, what impulse was applied to the ball by the racket? 8.5 N*s 4.3 N*s 3.2 N*s 2.1 N*s O 2.6 N*s
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
![**Question:**
A 47 g tennis ball is served at 45 m/s. If the ball started from rest, what impulse was applied to the ball by the racket?
**Options:**
- ○ 8.5 N·s
- ○ 4.3 N·s
- ○ 3.2 N·s
- ○ 2.1 N·s
- ○ 2.6 N·s
**Explanation:**
Impulse is the change in momentum of an object when a force is applied over time. It can be calculated using the formula:
\[ \text{Impulse} = \Delta p = m \times \Delta v \]
where \( \Delta p \) is the change in momentum, \( m \) is the mass, and \( \Delta v \) is the change in velocity.
In this example, the mass \( m \) of the tennis ball is 47 g or 0.047 kg, and the change in velocity \( \Delta v \) is 45 m/s \((45 \, \text{m/s} - 0 \, \text{m/s})\).
Calculating impulse:
\[ \text{Impulse} = 0.047 \, \text{kg} \times 45 \, \text{m/s} = 2.115 \, \text{N·s} \]
Therefore, the correct answer is approximately:
- ○ 2.1 N·s](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F500c0e80-687a-4e1b-8f8e-54233bb713dd%2F6fae687e-413e-4cd9-b89d-b9f4a42f49a6%2Fn9aazhp_processed.png&w=3840&q=75)
Transcribed Image Text:**Question:**
A 47 g tennis ball is served at 45 m/s. If the ball started from rest, what impulse was applied to the ball by the racket?
**Options:**
- ○ 8.5 N·s
- ○ 4.3 N·s
- ○ 3.2 N·s
- ○ 2.1 N·s
- ○ 2.6 N·s
**Explanation:**
Impulse is the change in momentum of an object when a force is applied over time. It can be calculated using the formula:
\[ \text{Impulse} = \Delta p = m \times \Delta v \]
where \( \Delta p \) is the change in momentum, \( m \) is the mass, and \( \Delta v \) is the change in velocity.
In this example, the mass \( m \) of the tennis ball is 47 g or 0.047 kg, and the change in velocity \( \Delta v \) is 45 m/s \((45 \, \text{m/s} - 0 \, \text{m/s})\).
Calculating impulse:
\[ \text{Impulse} = 0.047 \, \text{kg} \times 45 \, \text{m/s} = 2.115 \, \text{N·s} \]
Therefore, the correct answer is approximately:
- ○ 2.1 N·s
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON