A 45.0-kg girl is standing on a 167-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.30 m/s to the right relative to the plank. (Let the direction the girl is moving in be positive. Indicate the direction with the sign of your answer.) (a) What is her velocity relative to the surface of ice? m/s (b) What is the velocity of the plank relative to the surface of ice? m/s
A 45.0-kg girl is standing on a 167-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.30 m/s to the right relative to the plank. (Let the direction the girl is moving in be positive. Indicate the direction with the sign of your answer.) (a) What is her velocity relative to the surface of ice? m/s (b) What is the velocity of the plank relative to the surface of ice? m/s
Related questions
Question
A 45.0-kg girl is standing on a 167-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.30 m/s to the right relative to the plank. (Let the direction the girl is moving in be positive. Indicate the direction with the sign of your answer.)
(a) What is her velocity relative to the surface of ice?
m/s
(b) What is the velocity of the plank relative to the surface of ice?
m/s
m/s
(b) What is the velocity of the plank relative to the surface of ice?
m/s
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)