A 300-HP engine with a thermal efficiency of 30% is using a remote radiator which absorbs 25% of the heat supplied to the engine. Cooling system with cooling tower is used with a cooling range of 5°C. The temperature rise of the water after passing the remote radiator is 10°C. Air enters the cooling tower at 32°C dry-bulb; 26°C wet-bulb temperatures and leaves the tower at 36°C & 70%RH. Make a schematic diagram of the system, the process in the provided psychrometric chart and calculate the following: (a.) The water flow rate in the cooling tower in liters per hour, and (b.) If the heat absorbed by air is 20% of heat absorbed by the cooling tower water, what is the air flow needed in cu.m/hour.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A 300-HP engine with a thermal efficiency of 30% is using a remote radiator which absorbs 25% of the heat supplied to the engine.
Cooling system with cooling tower is used with a cooling range of 5°C. The temperature rise of the water after passing the remote
radiator is 10°C. Air enters the cooling tower at 32°C dry-bulb; 26°C wet-bulb temperatures and leaves the tower at 36°C &
70%RH. Make a schematic diagram of the system, the process in the provided psychrometric chart and calculate the following:
(a.) The water flow rate in the cooling tower in liters per hour; and
(b.) If the heat absorbed by air is 20% of heat absorbed by the cooling tower water, what is the
air flow needed in cu.m/hour.
Transcribed Image Text:A 300-HP engine with a thermal efficiency of 30% is using a remote radiator which absorbs 25% of the heat supplied to the engine. Cooling system with cooling tower is used with a cooling range of 5°C. The temperature rise of the water after passing the remote radiator is 10°C. Air enters the cooling tower at 32°C dry-bulb; 26°C wet-bulb temperatures and leaves the tower at 36°C & 70%RH. Make a schematic diagram of the system, the process in the provided psychrometric chart and calculate the following: (a.) The water flow rate in the cooling tower in liters per hour; and (b.) If the heat absorbed by air is 20% of heat absorbed by the cooling tower water, what is the air flow needed in cu.m/hour.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY