A 23.0 kg child is playing on a swing with a length of 2.5 m. If the swing starts from rest and makes an angle of 40.0◦ with the vertical at the top of the swing, a) determine the child’s speed at the bottom of the swing neglecting friction. b) If the swing has a speed of 2.8 m/s at the bottom, determine the work done by friction during the downswing and, bonus) assuming the force of friction is constant, determine the maximum angle the swing attains on the upswing after passing through the bottom. Hint: Use the approximation that cos θ ≈ 1 − 1 2 θ 2 for angles given in radians.
A 23.0 kg child is playing on a swing with a length of 2.5 m. If the swing starts from rest and makes an angle of 40.0◦ with the vertical at the top of the swing, a) determine the child’s speed at the bottom of the swing neglecting friction. b) If the swing has a speed of 2.8 m/s at the bottom, determine the work done by friction during the downswing and, bonus) assuming the force of friction is constant, determine the maximum angle the swing attains on the upswing after passing through the bottom. Hint: Use the approximation that cos θ ≈ 1 − 1 2 θ 2 for angles given in radians.
Related questions
Question
1. A 23.0 kg child is playing on a swing with a length of 2.5 m. If the swing starts from rest and makes an angle of 40.0◦ with the vertical at the top of the swing, a) determine the child’s speed at the bottom of the swing neglecting friction. b) If the swing has a speed of 2.8 m/s at the bottom, determine the work done by friction during the downswing and, bonus) assuming the
Hint: Use the approximation that cos θ ≈ 1 − 1 2 θ 2 for angles given in radians.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps