A 17.0-m length of hose is wound around a reel, which is initially at rest. The moment of inertia of the reel is 0.490 kg-m², and its radius is 0.150 m. When turning, friction at the axle exerts a torque of magnitude 3.20 N-m on the reel. If the hose is pulled so that the tension in it remains a constant 26.0 N, how long does it take to completely unwind the hose from the reel? Neglect the mass and the thickness of the hose, and assume that the hose unwinds without slipping.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
A 17.0-m length of hose is wound around a reel, which is initially at rest. The moment of inertia of the reel is 0.490 kg-m², and its radius
is 0.150 m. When turning, friction at the axle exerts a torque of magnitude 3.20 N-m on the reel. If the hose is pulled so that the tension
in it remains a constant 26.0 N, how long does it take to completely unwind the hose from the reel? Neglect the mass and the thickness
of the hose, and assume that the hose unwinds without slipping.
Transcribed Image Text:A 17.0-m length of hose is wound around a reel, which is initially at rest. The moment of inertia of the reel is 0.490 kg-m², and its radius is 0.150 m. When turning, friction at the axle exerts a torque of magnitude 3.20 N-m on the reel. If the hose is pulled so that the tension in it remains a constant 26.0 N, how long does it take to completely unwind the hose from the reel? Neglect the mass and the thickness of the hose, and assume that the hose unwinds without slipping.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

this is not correct

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Rotational Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON