A 100 g mass is undergoing simple harmonic motion along the x-axis on an ideal spring with k=150 N/m. At t = 0, the mass is at x = -10 cm and is moving with velocity v = 15 m/sec. a) What is the total energy of the system? b) What is the position of the mass as a function of time, x(t)? c) What is the acceleration of the mass at t = 2.5 sec?
Please answer all 5 parts
(a)
Given:
The mass attached to the spring is 100 g.
The force constant of the ideal spring is .
The position of mass is -10 cm.
The velocity of the mass is .
Introduction:
Simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to the object's displacement magnitude and acts towards the object's equilibrium position.
Calculation:
Write the expression of the total energy of the system.
Substitute for , for , for and -0.1 m for in the above expression.
Thus, the total energy of the system is 12 J.
(b)
Calculation:
Write the expression of angular velocity.
Substitute for and 0.1 kg for in the above expression.
Write the expression of .
Substitute 0 for in the above expression.
Thus, the expression of .
Step by step
Solved in 3 steps