A 0.8 kg collar is released from rest in the position shown, slides down the inclined rod with friction, and compresses the undeformed spring. Then the direction of motion is reversed and the collar slides up the rod. Knowing that the maximum deflection of the spring is 0.125m, answer the following: 0.5 m 30 k = 100 N/m 1. What force does not work on the collar as it move along the inclined rod? 2. What is the change in kinetic energy of the collar from the position when it is released from rest to the position when it compressed the spring to its maximum deflection? 3. What is the change in the total potential energy of the collar from the position when it is released from rest to the position when it compressed the spring to its maximum deflection? 4. What is the coefficient of sliding (kinetic) friction between the collar and the rod? 5. What is the maximum displacement the collar will have as it moves up the incline after it compressed the spring?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
A 0.8 kg collar is released from rest in the position
shown, slides down the inclined rod with friction,
and compresses the undeformed spring. Then the
direction of motion is reversed and the collar
slides up the rod. Knowing that the maximum
deflection of the spring is 0.125m, answer the
following:
0.5 m
30°
k = 100 N/m
1. What force does not work on the collar as it
move along the inclined rod?
2. What is the change in kinetic energy of the
collar from the position when it is released
from rest to the position when it
compressed the spring to its maximum
deflection?
3. What is the change in the total potential
energy of the collar from the position when
it is released from rest to the position when
it compressed the spring to its maximum
deflection?
4. What is the coefficient of sliding (kinetic)
friction between the collar and the rod?
5. What is the maximum displacement the
collar will have as it moves up the incline
after it compressed the spring?
Transcribed Image Text:A 0.8 kg collar is released from rest in the position shown, slides down the inclined rod with friction, and compresses the undeformed spring. Then the direction of motion is reversed and the collar slides up the rod. Knowing that the maximum deflection of the spring is 0.125m, answer the following: 0.5 m 30° k = 100 N/m 1. What force does not work on the collar as it move along the inclined rod? 2. What is the change in kinetic energy of the collar from the position when it is released from rest to the position when it compressed the spring to its maximum deflection? 3. What is the change in the total potential energy of the collar from the position when it is released from rest to the position when it compressed the spring to its maximum deflection? 4. What is the coefficient of sliding (kinetic) friction between the collar and the rod? 5. What is the maximum displacement the collar will have as it moves up the incline after it compressed the spring?
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY