9.)f(x) = [0, sin x, -T
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please explain steps in detail. I'll give pos feedback. thanks. I'm really stuck on this one
![In Problems 1-16, find the Fourier series of the function f on the
given interval. Give the number to which the Fourier series
converges at a point of discontinuity of f.
(9.) f(x) =
So,
sin x,
-T<x<0
0≤x≤T](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fca6b5de9-d666-4be4-bec5-372f49facd74%2Fb27943fb-b13a-4be6-b9d7-ec84ab825d04%2Fkt8zsh_processed.jpeg&w=3840&q=75)
Transcribed Image Text:In Problems 1-16, find the Fourier series of the function f on the
given interval. Give the number to which the Fourier series
converges at a point of discontinuity of f.
(9.) f(x) =
So,
sin x,
-T<x<0
0≤x≤T
![9. ao
an
2
=
= = = [ ^_^1(x) dx = = = [² sin z dx = ²
S
x
ㅠ
ㅠ
0
ㅠ
ㅠ
bn
=
12.2 Fourier Series
b₁
a1 =
=
=
•πT
= [ f(x) cos nx
π
-T
1+ (−1)n
π(1-n²)
•π
22/17 SO 0
2π
0
f(x)
ㅠ
1
dx
TE
sin 2x dx = 0
= -
21/17 100 (1 − cos 2x) dx
=
2π
ㅠ
π
[*_*f(x) sin nx dx = So
π
-π
=
for n = 2, 3, 4, . . .
+ sin x +
•πT
1
S
∞
ㅠ
•πT
=
24/7 * (cos(1 − n)a − cos(1 + n)a) da=0_ for n = 2,3,4,...
2π
0
n=2
*
sin x cos nx dx
=
S™ (sin
1
2
sin x sin nx dx
1+ (-1)"
π(1 — n²)
2π
Cos nx
641
sin(1 + n)r + sin(1 − n)x) dx](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fca6b5de9-d666-4be4-bec5-372f49facd74%2Fb27943fb-b13a-4be6-b9d7-ec84ab825d04%2Fq64obl_processed.png&w=3840&q=75)
Transcribed Image Text:9. ao
an
2
=
= = = [ ^_^1(x) dx = = = [² sin z dx = ²
S
x
ㅠ
ㅠ
0
ㅠ
ㅠ
bn
=
12.2 Fourier Series
b₁
a1 =
=
=
•πT
= [ f(x) cos nx
π
-T
1+ (−1)n
π(1-n²)
•π
22/17 SO 0
2π
0
f(x)
ㅠ
1
dx
TE
sin 2x dx = 0
= -
21/17 100 (1 − cos 2x) dx
=
2π
ㅠ
π
[*_*f(x) sin nx dx = So
π
-π
=
for n = 2, 3, 4, . . .
+ sin x +
•πT
1
S
∞
ㅠ
•πT
=
24/7 * (cos(1 − n)a − cos(1 + n)a) da=0_ for n = 2,3,4,...
2π
0
n=2
*
sin x cos nx dx
=
S™ (sin
1
2
sin x sin nx dx
1+ (-1)"
π(1 — n²)
2π
Cos nx
641
sin(1 + n)r + sin(1 − n)x) dx
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)