9.3. Find the eigenvalues and eigenvectors of the matrix [-3 -4 6] A = -4 -3 6 -4 -4 7 If A is diagonalizable, find a matrix P and a diagonal matrix D such that P-¹AP = D.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

can you help me with these two problems and can you do it step by step and I have  given the question and answer

### Eigenvalues and Eigenvectors

#### Example 9.3

For a given matrix:

- The first eigenvalue \( \lambda_1 \) is 1 with a multiplicity of 2. The corresponding eigenvectors are:
  \[
  \begin{bmatrix}
  -1 \\
  1 \\
  0 
  \end{bmatrix}
  \quad \text{and} \quad
  \begin{bmatrix}
  3 \\
  0 \\
  2 
  \end{bmatrix}
  \]

- The second eigenvalue \( \lambda_2 \) is -1 with a multiplicity of 1. The corresponding eigenvector is:
  \[
  \begin{bmatrix}
  1 \\
  1 \\
  1 
  \end{bmatrix}
  \]

Given matrices \( P \) and \( D \):
\[
P = 
\begin{bmatrix}
-1 & 3 & 1 \\
1 & 0 & 1 \\
0 & 2 & 1 
\end{bmatrix}
, \quad
D = 
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 
\end{bmatrix}
\]

#### Example 9.4

For another given matrix:

- The first eigenvalue \( \lambda_1 \) is -1 with a multiplicity of 2. The dimension of the eigenspace \( E_{\lambda_1} \) is 1. The corresponding eigenvector is:
  \[
  \begin{bmatrix}
  0 \\
  -1 \\
  1 
  \end{bmatrix}
  \]

- The second eigenvalue \( \lambda_2 \) is -3. The corresponding eigenvector is:
  \[
  \begin{bmatrix}
  1 \\
  2 \\
  -2 
  \end{bmatrix}
  \]

However, there are only 2 linearly independent eigenvectors, thus matrix \( A \) is not diagonalizable.
Transcribed Image Text:### Eigenvalues and Eigenvectors #### Example 9.3 For a given matrix: - The first eigenvalue \( \lambda_1 \) is 1 with a multiplicity of 2. The corresponding eigenvectors are: \[ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} \] - The second eigenvalue \( \lambda_2 \) is -1 with a multiplicity of 1. The corresponding eigenvector is: \[ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \] Given matrices \( P \) and \( D \): \[ P = \begin{bmatrix} -1 & 3 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} , \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \] #### Example 9.4 For another given matrix: - The first eigenvalue \( \lambda_1 \) is -1 with a multiplicity of 2. The dimension of the eigenspace \( E_{\lambda_1} \) is 1. The corresponding eigenvector is: \[ \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \] - The second eigenvalue \( \lambda_2 \) is -3. The corresponding eigenvector is: \[ \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} \] However, there are only 2 linearly independent eigenvectors, thus matrix \( A \) is not diagonalizable.
### Linear Algebra Exercises: Eigenvalues and Eigenvectors

#### 9.3. Find the Eigenvalues and Eigenvectors

Consider the matrix:
\[ 
A = \begin{bmatrix}
-3 & -4 & 6 \\
-4 & -3 & 6 \\
-4 & -4 & 7
\end{bmatrix}
\]

**Task:**
- Find the eigenvalues and eigenvectors of the matrix \( A \).
- If \( A \) is diagonalizable, find a matrix \( P \) and a diagonal matrix \( D \) such that \( P^{-1}AP = D \).

#### 9.4. Find the Eigenvalues and Eigenvectors

Consider the matrix:
\[ 
A = \begin{bmatrix}
-3 & -4 & -4 \\
-4 & 3 & 4 \\
4 & -4 & -5
\end{bmatrix}
\]

**Task:**
- Find the eigenvalues and eigenvectors of the matrix \( A \).
- If \( A \) is diagonalizable, find a matrix \( P \) and a diagonal matrix \( D \) such that \( P^{-1}AP = D \).

### Instructions for Solution:

To solve these problems, follow these steps:

1. **Calculate the Eigenvalues:**
   - Solve the characteristic equation \(\det(A - \lambda I) = 0\).
   
2. **Find the Eigenvectors:**
   - For each eigenvalue \(\lambda\), solve the system \((A - \lambda I)x = 0\) to find the corresponding eigenvectors.
   
3. **Check Diagonalizability:**
   - Verify if \( A \) is diagonalizable by ensuring that there are enough linearly independent eigenvectors to form the matrix \( P \).
   
4. **Construct Matrices \( P \) and \( D \):**
   - If \( A \) is diagonalizable, construct \( P \) using the eigenvectors and \( D \) using the eigenvalues.

### Notes:

- Ensure to show all steps and calculations clearly.
- Eigenvalues are the roots of the characteristic polynomial.
- Eigenvectors are found by substituting the eigenvalues back into the equation \((A - \lambda I)x = 0\) and solving for \( x \).

This exercise helps to understand the concepts of eigenvalues, eigenvectors,
Transcribed Image Text:### Linear Algebra Exercises: Eigenvalues and Eigenvectors #### 9.3. Find the Eigenvalues and Eigenvectors Consider the matrix: \[ A = \begin{bmatrix} -3 & -4 & 6 \\ -4 & -3 & 6 \\ -4 & -4 & 7 \end{bmatrix} \] **Task:** - Find the eigenvalues and eigenvectors of the matrix \( A \). - If \( A \) is diagonalizable, find a matrix \( P \) and a diagonal matrix \( D \) such that \( P^{-1}AP = D \). #### 9.4. Find the Eigenvalues and Eigenvectors Consider the matrix: \[ A = \begin{bmatrix} -3 & -4 & -4 \\ -4 & 3 & 4 \\ 4 & -4 & -5 \end{bmatrix} \] **Task:** - Find the eigenvalues and eigenvectors of the matrix \( A \). - If \( A \) is diagonalizable, find a matrix \( P \) and a diagonal matrix \( D \) such that \( P^{-1}AP = D \). ### Instructions for Solution: To solve these problems, follow these steps: 1. **Calculate the Eigenvalues:** - Solve the characteristic equation \(\det(A - \lambda I) = 0\). 2. **Find the Eigenvectors:** - For each eigenvalue \(\lambda\), solve the system \((A - \lambda I)x = 0\) to find the corresponding eigenvectors. 3. **Check Diagonalizability:** - Verify if \( A \) is diagonalizable by ensuring that there are enough linearly independent eigenvectors to form the matrix \( P \). 4. **Construct Matrices \( P \) and \( D \):** - If \( A \) is diagonalizable, construct \( P \) using the eigenvectors and \( D \) using the eigenvalues. ### Notes: - Ensure to show all steps and calculations clearly. - Eigenvalues are the roots of the characteristic polynomial. - Eigenvectors are found by substituting the eigenvalues back into the equation \((A - \lambda I)x = 0\) and solving for \( x \). This exercise helps to understand the concepts of eigenvalues, eigenvectors,
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,