9. Let (x) and (yn) be sequences of positive numbers such that lim (xn/Yn) = +∞, a. Show that if lim (yn) = +∞, then lim (xn) = +∞. b. Show that if (xn) is bounded, then lim (yn) = 0. Solution 9. (a) Since x/yn → ∞, there exists K₁ such that if n> K₁, then xnyn. Now apply Theorem 3.6.4(a). (b) Let 0 < x < M. If (y) does not converge to o, there exist & > 0 and a subsequence (yn) such that E0Yn. Since lim(x/yn) = ∞, there exists K such that if k > K, then M/ɛ0 < xn/Ynk, which is a contradiction. Hint >>
9. Let (x) and (yn) be sequences of positive numbers such that lim (xn/Yn) = +∞, a. Show that if lim (yn) = +∞, then lim (xn) = +∞. b. Show that if (xn) is bounded, then lim (yn) = 0. Solution 9. (a) Since x/yn → ∞, there exists K₁ such that if n> K₁, then xnyn. Now apply Theorem 3.6.4(a). (b) Let 0 < x < M. If (y) does not converge to o, there exist & > 0 and a subsequence (yn) such that E0Yn. Since lim(x/yn) = ∞, there exists K such that if k > K, then M/ɛ0 < xn/Ynk, which is a contradiction. Hint >>
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
aaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
PLKEASE HELP RPOVES 9B
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
![9. Let (x) and (yn) be sequences of positive numbers such that lim (xn/Yn) = +∞,
a. Show that if lim (yn) = +∞, then lim (xn) = +∞.
b. Show that if (xn) is bounded, then lim (yn) = 0.
Solution
9.
(a) Since x/yn → ∞, there exists K₁ such that if n>
K₁, then xnyn. Now apply Theorem 3.6.4(a).
(b) Let 0 < x < M. If (y) does not converge to o,
there exist & > 0 and a subsequence (yn) such that
E0Yn. Since lim(x/yn) = ∞, there exists K such
that if k > K, then M/ɛ0 < xn/Ynk, which is a
contradiction.
Hint >>](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb20beb72-840b-470a-857a-f2b487ca02a4%2F756663f3-41be-4485-8f25-af27a326fefb%2F8vzwv2i_processed.png&w=3840&q=75)
Transcribed Image Text:9. Let (x) and (yn) be sequences of positive numbers such that lim (xn/Yn) = +∞,
a. Show that if lim (yn) = +∞, then lim (xn) = +∞.
b. Show that if (xn) is bounded, then lim (yn) = 0.
Solution
9.
(a) Since x/yn → ∞, there exists K₁ such that if n>
K₁, then xnyn. Now apply Theorem 3.6.4(a).
(b) Let 0 < x < M. If (y) does not converge to o,
there exist & > 0 and a subsequence (yn) such that
E0Yn. Since lim(x/yn) = ∞, there exists K such
that if k > K, then M/ɛ0 < xn/Ynk, which is a
contradiction.
Hint >>
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)