9. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of 16°C, a pressure of 100 kPa, and an enthalpy of 391.2 kJ/kg. The gas leaves the compressor at a temperature of 245°C, a pressure of 0.6 MPa, and an enthalpy of 534.5 kJ/kg. There is no heat transfer to or from the gas as it flows through the compressor. (a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible. (b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is 80 m/s and that at exit is 160 m/s.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
9. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature
of 16°C, a pressure of 100 kPa, and an enthalpy of 391.2 kJ/kg. The gas leaves the compressor at
a temperature of 245°C, a pressure of 0.6 MPa, and an enthalpy of 534.5 kJ/kg. There is no heat
transfer to or from the gas as it flows through the compressor.
(a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and
exit to be negligible.
(b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is 80 m/s
and that at exit is 160 m/s.
Transcribed Image Text:9. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of 16°C, a pressure of 100 kPa, and an enthalpy of 391.2 kJ/kg. The gas leaves the compressor at a temperature of 245°C, a pressure of 0.6 MPa, and an enthalpy of 534.5 kJ/kg. There is no heat transfer to or from the gas as it flows through the compressor. (a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible. (b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is 80 m/s and that at exit is 160 m/s.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The