8. The resistance and reactance per phase of the rotor of a 3-phase induction motor are 0.6 ohm and 5 ohms respectively. The induction motor has a star-connected rotor and when the stator is connected to a supply of normal voltage, the induced e.m.f. between the slip rings at standstill is 80 V. Calculate the current in each phase and the power factor at starting when (i) the slip-rings are shorted, (ii) slip-rings are connected to a star-connected resistance of 4 ohm per phase.
8. The resistance and reactance per phase of the rotor of a 3-phase induction motor are 0.6 ohm and 5 ohms respectively. The induction motor has a star-connected rotor and when the stator is connected to a supply of normal voltage, the induced e.m.f. between the slip rings at standstill is 80 V. Calculate the current in each phase and the power factor at starting when (i) the slip-rings are shorted, (ii) slip-rings are connected to a star-connected resistance of 4 ohm per phase.
Delmar's Standard Textbook Of Electricity
7th Edition
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Stephen L. Herman
Chapter32: Three-phase Motors
Section: Chapter Questions
Problem 6RQ: Name three factors that determine the torque produced by an induction motor.
Related questions
Concept explainers
KVL and KCL
KVL stands for Kirchhoff voltage law. KVL states that the total voltage drops around the loop in any closed electric circuit is equal to the sum of total voltage drop in the same closed loop.
Sign Convention
Science and technology incorporate some ideas and techniques of their own to understand a system skilfully and easily. These techniques are called conventions. For example: Sign conventions of mirrors are used to understand the phenomenon of reflection and refraction in an easier way.
Question
Answer 8
![7.
The rotor resistances per phase of a 4-pole, 50-Hz, 3-phase induction motor are 0.024 ohm and 0.12
ohm respectively. Find the speed at maximum torque. Also find the value of the additional rotor
resistance per phase required to develop 80% of maximum torque at starting.
[1200 r.p.m. 0.036 Q] (Elect. Machines, A.M.I.E. Sec. B, 1990)
8.
The resistance and reactance per phase of the rotor of a 3-phase induction motor are 0.6 ohm and
5 ohms respectively. The induction motor has a star-connected rotor and when the stator is
connected to a supply of normal voltage, the induced e.m.f. between the slip rings at standstill is 80
V. Calculate the current in each phase and the power factor at starting when (i) the slip-rings are
shorted, (ii) slip-rings are connected to a star-connected resistance of 4 ohm per phase.
[(i) 9.17 amp, 0.1194 lag (i) 6.8 amp, 0.6765 lag||Rajiv Gandhi Technical University, Bhopal, 2000]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbda3ac01-158b-4675-99ac-f1acfe21548c%2Fabe17615-2110-451f-bd06-6f25286c93e2%2Febqvt5l_processed.png&w=3840&q=75)
Transcribed Image Text:7.
The rotor resistances per phase of a 4-pole, 50-Hz, 3-phase induction motor are 0.024 ohm and 0.12
ohm respectively. Find the speed at maximum torque. Also find the value of the additional rotor
resistance per phase required to develop 80% of maximum torque at starting.
[1200 r.p.m. 0.036 Q] (Elect. Machines, A.M.I.E. Sec. B, 1990)
8.
The resistance and reactance per phase of the rotor of a 3-phase induction motor are 0.6 ohm and
5 ohms respectively. The induction motor has a star-connected rotor and when the stator is
connected to a supply of normal voltage, the induced e.m.f. between the slip rings at standstill is 80
V. Calculate the current in each phase and the power factor at starting when (i) the slip-rings are
shorted, (ii) slip-rings are connected to a star-connected resistance of 4 ohm per phase.
[(i) 9.17 amp, 0.1194 lag (i) 6.8 amp, 0.6765 lag||Rajiv Gandhi Technical University, Bhopal, 2000]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning