8. For each of the linear transformations below, write the matrix of the linear transformation. [ 2х, — 4х2] a. T:i € R3 - T(x) E R³, where T is given by T X1 - X3 -x2 + 3x3] [3x1 – 2x2] X1 + 4x2 b. T:ž E R² → T(X) E R³, where T is given by T (D = X2 c. Consider a polynomial in P2 given by p(t) = ao + azt + azt?. Define a linear operator T by T(p(t)) = (2t2 – t + 6)p(t) in P4. Find the matrix of the transformation. [Hint: See Example 2.] %3D
8. For each of the linear transformations below, write the matrix of the linear transformation. [ 2х, — 4х2] a. T:i € R3 - T(x) E R³, where T is given by T X1 - X3 -x2 + 3x3] [3x1 – 2x2] X1 + 4x2 b. T:ž E R² → T(X) E R³, where T is given by T (D = X2 c. Consider a polynomial in P2 given by p(t) = ao + azt + azt?. Define a linear operator T by T(p(t)) = (2t2 – t + 6)p(t) in P4. Find the matrix of the transformation. [Hint: See Example 2.] %3D
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Linear Transformations and Matrix Representations**
8. For each of the linear transformations below, write the matrix of the linear transformation.
a. \( T: \vec{x} \in \mathbb{R}^3 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by:
\[
T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) =
\begin{bmatrix}
2x_1 - 4x_2 \\
x_1 - x_3 \\
-x_2 + 3x_3 \\
3x_1 - 2x_2
\end{bmatrix}
\]
b. \( T: \vec{x} \in \mathbb{R}^2 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by:
\[
T \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) =
\begin{bmatrix}
x_1 + 4x_2 \\
x_2
\end{bmatrix}
\]
c. Consider a polynomial in \( P_2 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 \). Define a linear operator \( T \) by \( T(p(t)) = (2t^2 - t + 6)p(t) \) in \( P_4 \). Find the matrix of the transformation. [Hint: See Example 2.]
d. Consider a polynomial in \( P_3 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \). Find the matrix of the linear transformation taking this vector into \( P_2 \) defined by the derivative operator \( \frac{d}{dt}[p(t)] \).
e. Consider the function defined as \( y(x) = a_1 e^x + a_2 e^{-x} + a_3 e^{5x} + a_4 e^{-7x} \). Write the matrix of the linear transformation defined by the derivative operator \( \frac](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F410816ed-4be2-4291-b0fb-4c8f4b2206ab%2F8879fd53-eee4-41ec-903b-1ab7d23c5967%2Fy78i8b_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Linear Transformations and Matrix Representations**
8. For each of the linear transformations below, write the matrix of the linear transformation.
a. \( T: \vec{x} \in \mathbb{R}^3 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by:
\[
T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) =
\begin{bmatrix}
2x_1 - 4x_2 \\
x_1 - x_3 \\
-x_2 + 3x_3 \\
3x_1 - 2x_2
\end{bmatrix}
\]
b. \( T: \vec{x} \in \mathbb{R}^2 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by:
\[
T \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) =
\begin{bmatrix}
x_1 + 4x_2 \\
x_2
\end{bmatrix}
\]
c. Consider a polynomial in \( P_2 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 \). Define a linear operator \( T \) by \( T(p(t)) = (2t^2 - t + 6)p(t) \) in \( P_4 \). Find the matrix of the transformation. [Hint: See Example 2.]
d. Consider a polynomial in \( P_3 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \). Find the matrix of the linear transformation taking this vector into \( P_2 \) defined by the derivative operator \( \frac{d}{dt}[p(t)] \).
e. Consider the function defined as \( y(x) = a_1 e^x + a_2 e^{-x} + a_3 e^{5x} + a_4 e^{-7x} \). Write the matrix of the linear transformation defined by the derivative operator \( \frac
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)