8. For each of the linear transformations below, write the matrix of the linear transformation. [ 2х, — 4х2] a. T:i € R3 - T(x) E R³, where T is given by T X1 - X3 -x2 + 3x3] [3x1 – 2x2] X1 + 4x2 b. T:ž E R² → T(X) E R³, where T is given by T (D = X2 c. Consider a polynomial in P2 given by p(t) = ao + azt + azt?. Define a linear operator T by T(p(t)) = (2t2 – t + 6)p(t) in P4. Find the matrix of the transformation. [Hint: See Example 2.] %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Linear Transformations and Matrix Representations**

8. For each of the linear transformations below, write the matrix of the linear transformation.

a. \( T: \vec{x} \in \mathbb{R}^3 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by:
\[
T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = 
\begin{bmatrix} 
2x_1 - 4x_2 \\ 
x_1 - x_3 \\ 
-x_2 + 3x_3 \\ 
3x_1 - 2x_2 
\end{bmatrix}
\]

b. \( T: \vec{x} \in \mathbb{R}^2 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by:
\[
T \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = 
\begin{bmatrix} 
x_1 + 4x_2 \\ 
x_2 
\end{bmatrix}
\]

c. Consider a polynomial in \( P_2 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 \). Define a linear operator \( T \) by \( T(p(t)) = (2t^2 - t + 6)p(t) \) in \( P_4 \). Find the matrix of the transformation. [Hint: See Example 2.]

d. Consider a polynomial in \( P_3 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \). Find the matrix of the linear transformation taking this vector into \( P_2 \) defined by the derivative operator \( \frac{d}{dt}[p(t)] \).

e. Consider the function defined as \( y(x) = a_1 e^x + a_2 e^{-x} + a_3 e^{5x} + a_4 e^{-7x} \). Write the matrix of the linear transformation defined by the derivative operator \( \frac
Transcribed Image Text:**Linear Transformations and Matrix Representations** 8. For each of the linear transformations below, write the matrix of the linear transformation. a. \( T: \vec{x} \in \mathbb{R}^3 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by: \[ T \left( \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} 2x_1 - 4x_2 \\ x_1 - x_3 \\ -x_2 + 3x_3 \\ 3x_1 - 2x_2 \end{bmatrix} \] b. \( T: \vec{x} \in \mathbb{R}^2 \rightarrow T(\vec{x}) \in \mathbb{R}^3 \), where \( T \) is given by: \[ T \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + 4x_2 \\ x_2 \end{bmatrix} \] c. Consider a polynomial in \( P_2 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 \). Define a linear operator \( T \) by \( T(p(t)) = (2t^2 - t + 6)p(t) \) in \( P_4 \). Find the matrix of the transformation. [Hint: See Example 2.] d. Consider a polynomial in \( P_3 \) given by \( p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \). Find the matrix of the linear transformation taking this vector into \( P_2 \) defined by the derivative operator \( \frac{d}{dt}[p(t)] \). e. Consider the function defined as \( y(x) = a_1 e^x + a_2 e^{-x} + a_3 e^{5x} + a_4 e^{-7x} \). Write the matrix of the linear transformation defined by the derivative operator \( \frac
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,